-
J. Thorac. Cardiovasc. Surg. · Dec 1999
Comparative StudyThe influence of regional spinal cord hypothermia on transcranial myogenic motor-evoked potential monitoring and the efficacy of spinal cord ischemia detection.
- S A Meylaerts, P De Haan, C J Kalkman, J Lips, B A De Mol, and M J Jacobs.
- Department of Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
- J. Thorac. Cardiovasc. Surg. 1999 Dec 1;118(6):1038-45.
ObjectiveMyogenic motor-evoked responses to transcranial electrical stimulation (transcranial myogenic motor-evoked potentials) can rapidly detect spinal cord ischemia during thoracoabdominal aortic aneurysm repair. Recent evidence suggests that regional spinal cord hypothermia increases spinal cord ischemia tolerance. We investigated the influence of subdural infusion cooling on transcranial myogenic motor-evoked potential characteristics and the time to detect spinal cord ischemia in 6 pigs.MethodsRegional hypothermia was produced by subdural perfusion cooling. A laminectomy and incision of the dura were performed at L2 to advance 2 inflow catheters at L4 and L6, to cool the lumbar subdural space with saline solution. Two temperature probes were advanced at L3 and L5, and 1 cerebrospinal fluid pressure line was advanced at L4. Spontaneous cerebrospinal fluid outflow was allowed. Spinal cord ischemia was produced by clamping a set of critical lumbar arteries, previously identified by transcranial myogenic motor-evoked potentials and lumbar artery clamping. The time between the onset of ischemia and detection with transcranial myogenic motor-evoked potentials (amplitude < 25%) was determined at cerebrospinal fluid temperatures of 37 degrees C and 28 degrees C. Thereafter, the influence of progressive cerebrospinal fluid cooling on transcranial myogenic motor-evoked potential amplitude and latency was determined.ResultsThe time necessary to produce ischemic transcranial myogenic motor-evoked potentials, after the clamping of critical lumbar arteries, was not affected at moderate subdural hypothermia (3.8 +/- 0.9 min) compared with subdural normothermia (3.2 +/- 0.5 min; P =.6). Thereafter, progressive cooling resulted in a transcranial myogenic motor-evoked potential amplitude increase at 28 degrees C to 30 degrees C and was followed by a progressive decrease. Response amplitudes decreased below 25% at 14.0 degrees C +/- 1.1 degrees C. The influence of cerebrospinal fluid temperature on transcranial myogenic motor-evoked potential amplitude was best represented by a quadratic regression curve with a maximum at 29.6 degrees C. In contrast, transcranial myogenic motor-evoked potential latencies increased linearly with decreasing subdural temperatures.ConclusionsDetection of spinal cord ischemia with transcranial myogenic motor-evoked potentials is not delayed at moderate subdural hypothermia in pigs. At a cerebrospinal fluid temperature of 28 degrees C, transcranial myogenic motor-evoked potential amplitudes are increased. Further cerebrospinal fluid temperature decreases result in progressive amplitude decreases and latency increases.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.