• Brain · Feb 2009

    Levodopa enhances synaptic plasticity in the substantia nigra pars reticulata of Parkinson's disease patients.

    • I A Prescott, J O Dostrovsky, E Moro, M Hodaie, A M Lozano, and W D Hutchison.
    • Department of Physiology, University of Toronto, University of Toronto, Toronto, Canada.
    • Brain. 2009 Feb 1; 132 (Pt 2): 309-18.

    AbstractParkinson's disease, caused by the loss of dopaminergic nigrostriatal projections, is a debilitating neurodegenerative disease characterized by bradykinesia, rigidity, tremor and postural instability. The dopamine precursor levodopa (L-dopa) is the most effective treatment for the amelioration of Parkinson's disease signs and symptoms, but long-term administration can lead to disabling motor fluctuations and L-dopa -induced dyskinesias (LIDs). Studies in rat striatal slices have shown dopamine to be an essential component of activity-dependent synaptic plasticity at the input to the basal ganglia, but dopamine is also released from ventrally projecting dendrites of the substantia nigra pars compacta (SNc) on the substantia nigra pars reticulata (SNr), a major output structure of the basal ganglia. We characterized synaptic plasticity in the SNr using field potentials evoked with a nearby microelectrode (fEPs), in 18 Parkinson's disease patients undergoing implantation of deep brain stimulating (DBS) electrodes in the subthalamic nucleus (STN). High frequency stimulation (HFS--four trains of 2 s at 100 Hz) in the SNr failed to induce a lasting change in test fEPs (1 Hz) amplitudes in patients OFF medication (decayed to baseline by 160 s). Following oral L-dopa administration, HFS induced a potentiation of the fEP amplitudes (+29.3% of baseline at 160 s following a plateau). Our findings suggest that extrastriatal dopamine modulates activity-dependent synaptic plasticity at basal ganglia output neurons. Dopamine medication state clearly impacts fEP amplitude, and the lasting nature of the increase is reminiscent of LTP-like changes, indicating that aberrant synaptic plasticity may play a role in the pathophysiology of Parkinson's disease.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,706,642 articles already indexed!

We guarantee your privacy. Your email address will not be shared.