• Journal of neurotrauma · Nov 2021

    Post-traumatic epilepsy in zebrafish is drug-resistant and impairs cognitive function.

    • Sung-Joon Cho, Eugene Park, Andrew Baker, and Aylin Y Reid.
    • Division of Fundamental Neurobiology, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.
    • J. Neurotrauma. 2021 Nov 15; 38 (22): 3174-3183.

    AbstractPost-traumatic epilepsy (PTE) is acquired epilepsy after traumatic brain injury (TBI). Despite the availability of more than 20 antiseizure medications (ASMs), there is no way at present to prevent epileptogenesis in TBI survivors, and many cases of PTE become drug-resistant. Importantly, the adverse effects of ASMs can significantly affect patients' quality of life. Mammalian models are commonly used for studying refractory PTE, but are expensive and laborious. Zebrafish models have become popular for studying epilepsy, but most focus on larvae, and there have been no reports to date of pharmacological screening in an adult zebrafish model of acquired epilepsy. Valid animal models are critical for understanding PTE and for developing novel therapeutics. The aim of the present study was to characterize the cognitive impairments of a zebrafish model of TBI that leads to the development of PTE. Using combined behavioral and electrophysiological approaches, we also characterized the pharmacological effects of the most commonly used ASMs to manage PTE (valproate, carbamazepine, and phenytoin). Zebrafish with PTE exhibited impairments in learning and memory, difficulty in decision making, and reduced social preference. Valproate and carbamazepine had a limited protective effect against behavioral seizures, and all three drugs failed to significantly reduce electrographical seizures. The negative impacts of TBI and ASMs in zebrafish parallel those observed in other animals, making the zebrafish model of PTE a promising high-throughput model of refractory and drug-resistant epilepsy.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,706,642 articles already indexed!

We guarantee your privacy. Your email address will not be shared.