• J. Neurosci. · Jun 2011

    Pacemaker neurons within newborn spinal pain circuits.

    • Jie Li and Mark L Baccei.
    • Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, Ohio 45267, USA.
    • J. Neurosci. 2011 Jun 15; 31 (24): 9010-22.

    AbstractSpontaneous activity driven by "pacemaker" neurons, defined by their intrinsic ability to generate rhythmic burst firing, contributes to the development of sensory circuits in many regions of the immature CNS. However, it is unknown whether pacemaker-like neurons are present within central pain pathways in the neonate. Here, we provide evidence that a subpopulation of glutamatergic interneurons within lamina I of the rat spinal cord exhibits oscillatory burst firing during early life, which occurs independently of fast synaptic transmission. Pacemaker neurons were distinguished by a higher ratio of persistent, voltage-gated Na(+) conductance to leak membrane conductance (g(Na,P)/g(leak)) compared with adjacent, nonbursting lamina I neurons. The activation of high-threshold (N-type and L-type) voltage-gated Ca(2+) channels also facilitated rhythmic burst firing by triggering intracellular Ca(2+) signaling. Bursting neurons received direct projections from high-threshold sensory afferents but transmitted nociceptive signals with poor fidelity while in the bursting mode. The observation that pacemaker neurons send axon collaterals throughout the neonatal spinal cord raises the possibility that intrinsic burst firing could provide an endogenous drive to the developing sensorimotor networks that mediate spinal pain reflexes.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.