• Statistics in medicine · Feb 2003

    Applications of continuous time hidden Markov models to the study of misclassified disease outcomes.

    • Alexandre Bureau, Stephen Shiboski, and James P Hughes.
    • Group in Biostatistics, School of Public Health, University of California, Berkeley, CA 94720, USA.
    • Stat Med. 2003 Feb 15; 22 (3): 441-62.

    AbstractDisease progression in prospective clinical and epidemiological studies is often conceptualized in terms of transitions between disease states. Analysis of data from such studies can be complicated by a number of factors, including the presence of individuals in various prevalent disease states and with unknown prior disease history, interval censored observations of state transitions and misclassified measurements of disease states. We present an approach where the disease states are modelled as the hidden states of a continuous time hidden Markov model using the imperfect measurements of the disease state as observations. Covariate effects on transitions between disease states are incorporated using a generalized regression framework. Parameter estimation and inference are based on maximum likelihood methods and rely on an EM algorithm. In addition, techniques for model assessment are proposed. Applications to two binary disease outcomes are presented: the oral lesion hairy leukoplakia in a cohort of HIV infected men and cervical human papillomavirus (HPV) infection in a cohort of young women. Estimated transition rates and misclassification probabilities for the hairy leukoplakia data agree well with clinical observations on the persistence and diagnosis of this lesion, lending credibility to the interpretation of hidden states as representing the actual disease states. By contrast, interpretation of the results for the HPV data are more problematic, illustrating that successful application of the hidden Markov model may be highly dependent on the degree to which the assumptions of the model are satisfied.Copyright 2003 John Wiley & Sons, Ltd.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.