-
Critical care medicine · May 2013
Multicenter Study Comparative StudyDevelopment of a genomic metric that can be rapidly used to predict clinical outcome in severely injured trauma patients.
- H Shaw Warren, Tezcan Ozrazgat Baslanti, Azra Bihorac, Alex G Cuenca, Lori F Gentile, M Cecilia Lopez, Ricardo Ungaro, Junhee Seok, Michael N Mindrinos, Philip A Efron, Joseph Cuschieri, Ronald G Tompkins, Ronald V Maier, Henry V Baker, Lyle L Moldawer, and Inflammation and Host Response to Injury Collaborative Research Program.
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA.
- Crit. Care Med.. 2013 May 1;41(5):1175-85.
ObjectiveMany patients have complicated recoveries following severe trauma due to the development of organ injury. Physiological and anatomical prognosticators have had limited success in predicting clinical trajectories. We report on the development and retrospective validation of a simple genomic composite score that can be rapidly used to predict clinical outcomes.DesignRetrospective cohort study.SettingMulti-institutional level 1 trauma centers.PatientsData were collected from 167 severely traumatized (injury severity score >15) adult (18-55 yr) patients.MethodsMicroarray-derived genomic data obtained from 167 severely traumatized patients over 28 days were assessed for differences in messenger RNA abundance among individuals with different clinical trajectories. Once a set of genes was identified based on differences in expression over the entire study period, messenger RNA abundance from these subjects obtained in the first 24 hours was analyzed in a blinded fashion using a rapid multiplex platform, and genomic data reduced to a single metric.ResultsFrom the existing genomic dataset, we identified 63 genes whose leukocyte expression differed between an uncomplicated and complicated clinical outcome over 28 days. Using a multiplex approach that can quantitate messenger RNA abundance in less than 12 hours, we reassessed total messenger RNA abundance from the first 24 hours after trauma and reduced the genomic data to a single composite score using the difference from reference. This composite score showed good discriminatory capacity to distinguish patients with a complicated outcome (area under a receiver-operator curve, 0.811; p <0.001). This was significantly better than the predictive power of either Acute Physiology and Chronic Health Evaluation II or new injury severity score scoring systems.ConclusionsA rapid genomic composite score obtained in the first 24 hours after trauma can retrospectively identify trauma patients who are likely to develop complicated clinical trajectories. A novel platform is described in which this genomic score can be obtained within 12 hours of blood collection, making it available for clinical decision making.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.