-
JMIR medical informatics · Mar 2021
ReviewUsing Machine Learning Technologies in Pressure Injury Management: Systematic Review.
- Mengyao Jiang, Yuxia Ma, Siyi Guo, Liuqi Jin, Lin Lv, Lin Han, and Ning An.
- Evidence-based Nursing Center, School of Nursing, Lanzhou University, Lanzhou, China.
- JMIR Med Inform. 2021 Mar 10; 9 (3): e25704.
BackgroundPressure injury (PI) is a common and preventable problem, yet it is a challenge for at least two reasons. First, the nurse shortage is a worldwide phenomenon. Second, the majority of nurses have insufficient PI-related knowledge. Machine learning (ML) technologies can contribute to lessening the burden on medical staff by improving the prognosis and diagnostic accuracy of PI. To the best of our knowledge, there is no existing systematic review that evaluates how the current ML technologies are being used in PI management.ObjectiveThe objective of this review was to synthesize and evaluate the literature regarding the use of ML technologies in PI management, and identify their strengths and weaknesses, as well as to identify improvement opportunities for future research and practice.MethodsWe conducted an extensive search on PubMed, EMBASE, Web of Science, Cumulative Index to Nursing and Allied Health Literature (CINAHL), Cochrane Library, China National Knowledge Infrastructure (CNKI), the Wanfang database, the VIP database, and the China Biomedical Literature Database (CBM) to identify relevant articles. Searches were performed in June 2020. Two independent investigators conducted study selection, data extraction, and quality appraisal. Risk of bias was assessed using the Prediction model Risk Of Bias ASsessment Tool (PROBAST).ResultsA total of 32 articles met the inclusion criteria. Twelve of those articles (38%) reported using ML technologies to develop predictive models to identify risk factors, 11 (34%) reported using them in posture detection and recognition, and 9 (28%) reported using them in image analysis for tissue classification and measurement of PI wounds. These articles presented various algorithms and measured outcomes. The overall risk of bias was judged as high.ConclusionsThere is an array of emerging ML technologies being used in PI management, and their results in the laboratory show great promise. Future research should apply these technologies on a large scale with clinical data to further verify and improve their effectiveness, as well as to improve the methodological quality.©Mengyao Jiang, Yuxia Ma, Siyi Guo, Liuqi Jin, Lin Lv, Lin Han, Ning An. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 10.03.2021.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.