• Rofo · Mar 2021

    Review

    Deep Learning CT Image Reconstruction in Clinical Practice.

    • Clemens Arndt, Felix Güttler, Andreas Heinrich, Florian Bürckenmeyer, Ioannis Diamantis, and Ulf Teichgräber.
    • Department of Radiology, Jena University Hospital, Jena, Germany.
    • Rofo. 2021 Mar 1; 193 (3): 252-261.

    Background Computed tomography (CT) is a central modality in modern radiology contributing to diagnostic medicine in almost every medical subspecialty, but particularly in emergency services. To solve the inverse problem of reconstructing anatomical slice images from the raw output the scanner measures, several methods have been developed, with filtered back projection (FBP) and iterative reconstruction (IR) subsequently providing criterion standards. Currently there are new approaches to reconstruction in the field of artificial intelligence utilizing the upcoming possibilities of machine learning (ML), or more specifically, deep learning (DL).Method This review covers the principles of present CT image reconstruction as well as the basic concepts of DL and its implementation in reconstruction. Subsequently commercially available algorithms and current limitations are being discussed.Results And Conclusion DL is an ML method that utilizes a trained artificial neural network to solve specific problems. Currently two vendors are providing DL image reconstruction algorithms for the clinical routine. For these algorithms, a decrease in image noise and an increase in overall image quality that could potentially facilitate the diagnostic confidence in lesion conspicuity or may translate to dose reduction for given clinical tasks have been shown. One study showed equal diagnostic accuracy in the detection of coronary artery stenosis for DL reconstructed images compared to IR at higher image quality levels. Consequently, a lot more research is necessary and should aim at diagnostic superiority in the clinical context covering a broadness of pathologies to demonstrate the reliability of such DL approaches.Key Points  · Following iterative reconstruction, there is a new approach to CT image reconstruction in the clinical routine using deep learning (DL) as a method of artificial intelligence.. · DL image reconstruction algorithms decrease image noise, improve image quality, and have potential to reduce radiation dose.. · Diagnostic superiority in the clinical context should be demonstrated in future trials..Citation Format· Arndt C, Güttler F, Heinrich A et al. Deep Learning CT Image Reconstruction in Clinical Practice. Fortschr Röntgenstr 2021; 193: 252 - 261.Thieme. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…