• Critical care medicine · Jun 2013

    Peripheral neural detection of danger-associated and pathogen-associated molecular patterns.

    • Gareth L Ackland, Vitaly Kazymov, Nephtali Marina, Mervyn Singer, and Alexander V Gourine.
    • Department of Medicine, Division of Medicine, Bloomsbury Institute of Intensive Care Medicine, University College London, London, United Kingdom. g.ackland@ucl.ac.UK
    • Crit. Care Med. 2013 Jun 1; 41 (6): e85-92.

    ObjectiveBidirectional links between the nervous and immune systems modulate inflammation. The cellular mechanisms underlying the detection of danger-associated molecular patterns and pathogen-associated molecular patterns by the nervous system are not well understood. We hypothesized that the carotid body, a tissue of neural crest origin, detect pathogen associated molecular patterns and danger associated molecular patterns via an inflammasome-dependent mechanism similar to that described in immune cells.DesignRandomized, controlled laboratory investigation.SettingUniversity laboratory.SubjectsC57Bl/6J mice; juvenile Sprague-Dawley rats, primary human neutrophils.InterventionsRat carotid body chemosensitive cells, and human neutrophils, were treated with TLR agonists to activate inflammasome-dependent pathways. In mice, systemic inflammation was induced by the pathogen associated molecular pattern zymosan (intraperitoneal injection; 500 mg/kg). Isolated carotid body/carotid sinus nerve preparations were used to assess peripheral chemoafferent activity. Ventilation was measured by whole-body plethysmography.Measurements And Main ResultsChemosensitive carotid body glomus cells exhibited toll-like receptor (TLR-2 and TLR-4), NLRP1, and NLRP3 inflammasome immunoreactivities. Zymosan increased NLRP3 inflammasome and interleukin-1β expression in glomus cells (p < 0.01). Human neutrophils demonstrated similar LPS-induced changes in inflammasome expression. Carotid body glomus cells also expressed IL-1 receptor and responded to application of IL-1β with increases in intracellular [Ca]. Four hours after injection of zymosan carotid sinus nerve chemoafferent discharge assessed in vitro (i.e., in the absence of acidosis/circulating inflammatory mediators) was increased five-fold (p < 0.001). Accordingly, zymosan-induced systemic inflammation was accompanied by enhanced respiratory activity.ConclusionsIn carotid body chemosensitive glomus cells, activation of toll-like receptors increases NLRP3 inflammasome expression, and enhances IL-1β production, which is capable of acting in an autocrine manner to enhance peripheral chemoreceptor drive.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.