• Int J Chron Obstruct Pulmon Dis · Jan 2019

    Respiratory Mechanics and Diaphragmatic Dysfunction in COPD Patients Who Failed Non-Invasive Mechanical Ventilation.

    • Alessandro Marchioni, Roberto Tonelli, Riccardo Fantini, Luca Tabbì, Ivana Castaniere, Francesco Livrieri, Sabrina Bedogni, Valentina Ruggieri, Lara Pisani, Stefano Nava, and Enrico Clini.
    • University Hospital of Modena, Pneumology Unit and Center for Rare Lung Diseases, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy.
    • Int J Chron Obstruct Pulmon Dis. 2019 Jan 1; 14: 2575-2585.

    BackgroundAlthough non-invasive mechanical ventilation (NIV) is the gold standard treatment for patients with acute exacerbation of COPD (AECOPD) developing respiratory acidosis, failure rates still range from 5% to 40%. Recent studies have shown that the onset of severe diaphragmatic dysfunction (DD) during AECOPD increases risk of NIV failure and mortality in this subset of patients. Although the imbalance between the load and the contractile capacity of inspiratory muscles seems the main cause of AECOPD-induced hypercapnic respiratory failure, data regarding the influence of mechanical derangement on DD in this acute phase are lacking. With this study, we investigate the impact of respiratory mechanics on diaphragm function in AECOPD patients experiencing NIV failure.MethodsTwelve AECOPD patients with respiratory acidosis admitted to the Respiratory ICU of the University Hospital of Modena from 2017 to 2018 undergoing mechanical ventilation (MV) due to NIV failure were enrolled. Static respiratory mechanics and end-expiratory lung volume (EELV) were measured after 30 mins of volume control mode MV. Subsequently, transdiaphragmatic pressure (Pdi) was calculated by means of a sniff maneuver (Pdisniff) after 30 mins of spontaneous breathing trial. Linear regression analysis and Pearson's correlation coefficient served to assess associations.ResultsAverage Pdisniff was 23.3 cmH2O (standard deviation 29 cmH2O) with 3 patients presenting bilateral diaphragm palsy. Pdisniff was directly correlated with static lung elastance (r=0.69, p=0.001) while inverse correlation was found with dynamic intrinsic PEEP (r=-0.73, p=0.007). No significant correlation was found with static intrinsic PEEP (r=-0.55, p=0.06), EELV (r=-0.4, p=0.3), airway resistance (r=-0.2, p=0.54), chest wall, and total elastance (r=-0-01, p=0.96 and r=0.3, p=0.36, respectively). Significant linear inverse correlation was found between Pdisniff and the ratio between Pdi assessed at tidal volume and Pdi sniff (r=-0.82, p=0.02).ConclusionThe causes of extreme DD in AECOPD patients who experienced NIV failure might be predominantly mechanical, driven by a severe dynamic hyperinflation that overlaps on an elastic lung substrate favoring volume overload.© 2019 Marchioni et al.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…