• J Biomech Eng · Feb 2012

    A one-dimensional model of the spinal cerebrospinal-fluid compartment.

    • Srdjan Cirovic and Minsuok Kim.
    • The Centre for Biomedical Engineering, University of Surrey, Guildford, United Kingdom. s.cirovic@surrey.ac.uk
    • J Biomech Eng. 2012 Feb 1; 134 (2): 021005.

    AbstractModeling of the cerebrospinal fluid (CSF) system in the spine is strongly motivated by the need to understand the origins of pathological conditions such as the emergence and growth of fluid-filled cysts in the spinal cord. In this study, a one-dimensional (1D) approximation for the flow in elastic conduits was used to formulate a model of the spinal CSF compartment. The modeling was based around a coaxial geometry in which the inner elastic cylinder represented the spinal cord, middle elastic tube represented the dura, and the outermost tube represented the vertebral column. The fluid-filled annuli between the cord and dura, and the dura and vertebral column, represented the subarachnoid and epidural spaces, respectively. The system of governing equations was constructed by applying a 1D form of mass and momentum conservation to all segments of the model. The developed 1D model was used to simulate CSF pulse excited by pressure disturbances in the subarachnoid and epidural spaces. The results were compared to those obtained from an equivalent two-dimensional finite element (FE) model which was implemented using a commercial software package. The analysis of linearized governing equations revealed the existence of three types of waves, of which the two slower waves can be clearly related to the wave modes identified in previous similar studies. The third, much faster, wave emanates directly from the vertebral column and has little effect on the deformation of the spinal cord. The results obtained from the 1D model and its FE counterpart were found to be in good general agreement even when sharp spatial gradients of the spinal cord stiffness were included; both models predicted large radial displacements of the cord at the location of an initial cyst. This study suggests that 1D modeling, which is computationally inexpensive and amenable to coupling with the models of the cranial CSF system, should be a useful approach for the analysis of some aspects of the CSF dynamics in the spine. The simulation of the CSF pulse excited by a pressure disturbance in the epidural space, points to the possibility that regions of the spinal cord with abnormally low stiffness may be prone to experiencing large strains due to coughing and sneezing.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.