-
Human molecular genetics · Aug 2018
ReviewDevelopment and application of CRISPR/Cas9 technologies in genomic editing.
- Cui Zhang, Renfu Quan, and Jinfu Wang.
- Institute of Cell and Development Biology, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, P.R. China.
- Hum. Mol. Genet. 2018 Aug 1; 27 (R2): R79-R88.
AbstractGenomic editing to correct disease-causing mutations is a promising approach for the treatment of human diseases. As a simple and programmable nuclease-based genomic editing tool, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system has substantially improved the ability to make precise changes in the human genome. Rapid development of CRISPR-based technologies in recent years has expanded its application scope and promoted CRISPR-based therapies in preclinical trails. Here, we review the application of the CRISPR system over the last 2 years; including its development and application in base editing, transcription modulation and epigenetic editing, genomic-scale screening, and cell and embryo therapy. Finally, the prospects and challenges related to application of CRISPR/Cas9 technologies are discussed.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*,_underline_or**bold**. - Superscript can be denoted by
<sup>text</sup>and subscript<sub>text</sub>. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3., hyphens-or asterisks*. - Links can be included with:
[my link to pubmed](http://pubmed.com) - Images can be included with:
 - For footnotes use
[^1](This is a footnote.)inline. - Or use an inline reference
[^1]to refer to a longer footnote elseweher in the document[^1]: This is a long footnote..