• Physical therapy · Jun 2021

    Observational Study

    A Deep-Learning-Based, Fully Automated Program to Segment and Quantify Major Spinal Components on Axial Lumbar Spine Magnetic Resonance Images.

    • Haotian Shen, Jiawei Huang, Qiangqiang Zheng, Zhiwei Zhu, Xiaoqiang Lv, Yong Liu, and Yue Wang.
    • Spine Lab, Department of Orthopedic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
    • Phys Ther. 2021 Jun 1; 101 (6).

    ObjectiveThe paraspinal muscles have been extensively studied on axial lumbar magnetic resonance imaging (MRI) for better understanding of back pain; however, the acquisition of measurements mainly relies on manual segmentation, which is time consuming. The study objective was to develop and validate a deep-learning-based program for automated acquisition of quantitative measurements for major lumbar spine components on axial lumbar MRIs, the paraspinal muscles in particular.MethodsThis study used a cross-sectional observational design. From the Hangzhou Lumbar Spine Study, T2-weighted axial MRIs at the L4-5 disk level of 120 participants (aged 54.8 years [SD = 15.0]) were selected to develop the deep-learning-based program Spine Explorer (Tulong). Another 30 axial lumbar MRIs were automatically measured by Spine Explorer and then manually measured using ImageJ to acquire quantitative size and compositional measurements for bilateral multifidus, erector spinae, and psoas muscles; the disk; and the spinal canal. Intersection-over-union and Dice score were used to evaluate the performance of automated segmentation. Intraclass coefficients and Bland-Altman plots were used to examine intersoftware agreements for various measurements.ResultsAfter training, Spine Explorer (Tulong) measures an axial lumbar MRI in 1 second. The intersections-over-union were 83.3% to 88.4% for the paraspinal muscles and 92.2% and 82.1% for the disk and spinal canal, respectively. For various size and compositional measurements of paraspinal muscles, Spine Explorer (Tulong) was in good agreement with ImageJ (intraclass coefficient = 0.85 to approximately 0.99).ConclusionSpine Explorer (Tulong) is automated, efficient, and reliable in acquiring quantitative measurements for the paraspinal muscles, the disk, and the canal, and various size and compositional measurements were simultaneously obtained for the lumbar paraspinal muscles.ImpactSuch an automated program might encourage further epidemiological studies of the lumbar paraspinal muscle degeneration and enhance paraspinal muscle assessment in clinical practice.© The Author(s) 2021. Published by Oxford University Press on behalf of the American Physical Therapy Association. All rights reserved. For permissions, please email: journals.permissions@oup.com.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.