• Brain · Dec 2021

    Longitudinal 18F-MK-6240 tau tangles accumulation follows Braak stages.

    • Tharick A Pascoal, Andrea L Benedet, Dana L Tudorascu, Joseph Therriault, Sulantha Mathotaarachchi, Melissa Savard, Firoza Z Lussier, Cécile Tissot, Mira Chamoun, Min Su Kang, Jenna Stevenson, Gassan Massarweh, Marie-Christine Guiot, Jean-Paul Soucy, Serge Gauthier, and Pedro Rosa-Neto.
    • Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Canada.
    • Brain. 2021 Dec 16; 144 (11): 3517-3528.

    AbstractTracking longitudinal tau tangles accumulation across the Alzheimer's disease continuum is crucial to better understand the natural history of tau pathology and for clinical trials. Although the available first-generation tau PET tracers detect tau accumulation in symptomatic individuals, their nanomolar affinity offers limited sensitivity to detect early tau accumulation in asymptomatic subjects. Here, we hypothesized the novel subnanomolar affinity tau tangles tracer 18F-MK-6240 can detect longitudinal tau accumulation in asymptomatic and symptomatic subjects. We studied 125 living individuals (65 cognitively unimpaired elderly amyloid-β-negative, 22 cognitively unimpaired elderly amyloid-β-positive, 21 mild cognitive impairment amyloid-β-positive and 17 Alzheimer's disease dementia amyloid-β-positive individuals) with baseline amyloid-β 18F-AZD4694 PET and baseline and follow-up tau 18F-MK-6240 PET. The 18F-MK-6240 standardized uptake value ratio (SUVR) was calculated at 90-110 min after tracer injection and the cerebellar crus I was used as the reference region. In addition, we assessed the in vivo18F-MK-6240 SUVR and post-mortem phosphorylated tau pathology in two participants with Alzheimer's disease dementia who died after the PET scans. We found that the cognitively unimpaired amyloid-β-negative individuals had significant longitudinal tau accumulation confined to the PET Braak-like stage I (3.9%) and II (2.8%) areas. The cognitively unimpaired amyloid-β-positive individuals showed greater tau accumulation in Braak-like stage I (8.9%) compared with later Braak stages. The patients with mild cognitive impairment and those who were Alzheimer's dementia amyloid-β-positive exhibited tau accumulation in Braak regions III-VI but not I-II. Cognitively impaired amyloid-β-positive individuals that were Braak II-IV at baseline displayed a 4.6-7.5% annual increase in tau accumulation in the Braak III-IV regions, whereas those who were cognitively impaired amyloid-β-positive Braak V-VI at baseline showed an 8.3-10.7% annual increase in the Braak regions V-VI. Neuropathological assessments confirmed PET-based Braak stages V-VI in the two brain donors. Our results suggest that the 18F-MK-6240 SUVR is able to detect longitudinal tau accumulation in asymptomatic and symptomatic Alzheimer's disease. The highest magnitude of 18F-MK-6240 SUVR accumulation moved from the medial temporal to sensorimotor cortex across the disease clinical spectrum. Trials using the 18F-MK-6240 SUVR in cognitively unimpaired individuals would be required to use regions of interest corresponding to early Braak stages, whereas trials in cognitively impaired subjects would benefit from using regions of interest associated with late Braak stages. Anti-tau trials should take into consideration an individual's baseline PET Braak-like stage to minimize the variability introduced by the hierarchical accumulation of tau tangles in the human brain. Finally, our post-mortem findings supported use of the 18F-MK-6240 SUVR as a biomarker to stage tau pathology in patients with Alzheimer's disease.© The Author(s) (2021). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For permissions, please email: journals.permissions@oup.com.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.