• Eur Spine J · Apr 2022

    Review

    Current benchtop protocols are not appropriate for the evaluation of distraction-based growing rods: a literature review to justify a new protocol and its development.

    • Niloufar Shekouhi, Amey Kelkar, David Dick, Vijay K Goel, and Derek Shaw.
    • Departments of Bioengineering and Orthopaedic Surgery, Engineering Center for Orthopedic Research Excellence (E-CORE), Colleges of Engineering and Medicine, University of Toledo, 2801 West Bancroft Street, MS 303, NI Hall, Room 5046, Toledo, OH, 43606, USA.
    • Eur Spine J. 2022 Apr 1; 31 (4): 963-979.

    PurposeAlthough distraction-based growing rods (GR) are the gold standard for the treatment of early onset scoliosis, they suffer from high failure rates. We have (1) performed a literature search to understand the deficiencies of the current protocols, (2) in vitro evaluation of GRs using our proposed protocol and performed a finite element (FE) model validation, and (3) identified key features which should be considered in mechanical testing setups.MethodsPubMed, Embase, and Web of Science databases were searched for articles published on (a) in vivo animal, in vitro cadaveric, and biomechanical studies analyzing the use of GRs as well as (b) failure mechanisms and risk factors for GRs. Both FE and benchtop models of a proposed TGR test construct were developed and evaluated for two cases, long tandem connectors (LT), and side-by-side connectors (SBS). The test construct consisted of five polymer blocks representing vertebral bodies, joined with springs to simulate spinal stiffness. The superior and inferior blocks accepted the pedicle screw anchors, while the three middle blocks were floating. After the pedicle screws, rods, and connectors were assembled onto this construct, distraction was performed, mimicking scoliosis surgery. The resulting distracted constructs were then subjected to static compression-bending loading. Yield load and stiffness were calculated and used to verify/validate the FE results.ResultsFrom the literature search, key features identified as significant were axial and transverse connectors, contoured rods, and distraction, distraction being the most challenging feature to incorporate in testing. The in silico analyses, once they are validated, can be used as a complementing technique to investigate other anatomical features which are not possible in the mechanical setup (like growth/scoliosis curvature). Based on our experiment, the LT constructs showed higher stiffness and yield load compared to SBS (78.85 N/mm vs. 59.68 N/mm and 838.84 N vs. 623.3 N). The FE predictions were in agreement with the experimental outcomes (within 10% difference). The maximum von Mises stresses were predicted adjacent to the distraction site, consistent with the location of observed failures in vivo.ConclusionThe two-way approach presented in this study can lead to a robust prediction of the contributing factors to the in vivo failure.© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…