• J Clin Monit Comput · Dec 2022

    Case Reports

    Regional respiratory sound abnormalities in pneumothorax and pleural effusion detected via respiratory sound visualization and quantification: case report.

    • Kazuya Kikutani, Shinichiro Ohshimo, Takuma Sadamori, Shingo Ohki, Hiroshi Giga, Junki Ishii, Hiromi Miyoshi, Kohei Ota, and Nobuaki Shime.
    • Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
    • J Clin Monit Comput. 2022 Dec 1; 36 (6): 176117661761-1766.

    AbstractAssessment of respiratory sounds by auscultation with a conventional stethoscope is subjective. We developed a continuous monitoring and visualization system that enables objectively and quantitatively visualizing respiratory sounds. We herein present two cases in which the system showed regional differences in the respiratory sounds. We applied our novel continuous monitoring and visualization system to evaluate respiratory abnormalities in patients with acute chest disorders. Respiratory sounds were continuously recorded to assess regional changes in respiratory sound volumes. Because we used this system as a pilot study, the results were not shown in real time and were retrospectively analyzed. Case 1 An 89-year-old woman was admitted to our hospital for sudden-onset respiratory distress and hypoxia. Chest X-rays revealed left pneumothorax; thus, we drained the thorax. After confirming that the pneumothorax had improved, we attached the continuous monitoring and visualization system. Chest X-rays taken the next day showed exacerbation of the pneumothorax. Visual and quantitative findings showed a decreased respiratory volume in the left lung after 3 h. Case 2 A 94-year-old woman was admitted to our hospital for dyspnea. Chest X-rays showed a large amount of pleural effusion on the right side. The continuous monitoring and visualization system visually and quantitatively revealed a decreased respiratory volume in the lower right lung field compared with that in the lower left lung field. Our newly developed continuous monitoring and visualization system enabled quantitatively and visually detecting regional differences in respiratory sounds in patients with pneumothorax and pleural effusion.© 2022. The Author(s), under exclusive licence to Springer Nature B.V.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…