• Br J Anaesth · Feb 2023

    The posterior dominant rhythm: an electroencephalographic biomarker for cognitive recovery after general anaesthesia.

    • Alyssa K Labonte, MohammadMehdi Kafashan, Emma R Huels, Stefanie Blain-Moraes, Mathias Basner, Max B Kelz, George A Mashour, Michael S Avidan, PalancaBen Julian ABJADepartment of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA; Division of Biology and Biomedical Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO, USA; Center o, and ReCCognition Study Group.
    • Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA; Division of Biology and Biomedical Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
    • Br J Anaesth. 2023 Feb 1; 130 (2): e233e242e233-e242.

    BackgroundThe posterior dominant rhythm (PDR) was the first oscillatory pattern noted in the EEG. Evoked by wakeful eyelid closure, these oscillations dissipate over seconds during loss of arousal. The peak frequency of the PDR maintains stability over years, suggesting utility as a state biomarker in the surveillance of acute cognitive impairments. This EEG signature has not been systematically investigated for tracking cognitive dysfunction after anaesthetic-induced loss of consciousness.MethodsThis substudy of Reconstructing Consciousness and Cognition (NCT01911195) investigated the PDR and cognitive function in 60 adult volunteers randomised to either 3 h of isoflurane general anaesthesia or resting wakefulness. Serial measurements of EEG power and cognitive task performance were assessed relative to pre-intervention baseline. Mixed-effects models allowed quantification of PDR and neurocognitive trajectories after return of responsiveness (ROR).ResultsIndividuals in the control group showed stability in the PDR peak frequency over several hours (median difference/inter-quartile range [IQR] of 0.02/0.20 Hz, P=0.39). After isoflurane general anaesthesia, the PDR peak frequency was initially reduced at ROR (median difference/IQR of 0.88/0.65 Hz, P<0.001). PDR peak frequency recovered at a rate of 0.20 Hz h-1. After ROR, the PDR peak frequency correlated with reaction time and accuracy on multiple cognitive tasks (P<0.001).ConclusionThe temporal trajectory of the PDR peak frequency could be a useful perioperative marker for tracking cognitive dysfunction on the order of hours after surgery, particularly for cognitive domains of working memory, visuomotor speed, and executive function.Clinical Trial RegistrationNCT01911195.Copyright © 2022 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…