• Journal of neurosurgery · Apr 2010

    Retracted Publication

    Enhancement of regeneration with glia cell line-derived neurotrophic factor-transduced human amniotic fluid mesenchymal stem cells after sciatic nerve crush injury.

    • Fu-Chou Cheng, Ming-Hong Tai, Meei-Ling Sheu, Chun-Jung Chen, Dar-Yu Yang, Hong-Lin Su, Shu-Peng Ho, Shu-Zhen Lai, and Hung-Chuan Pan.
    • Stem Cell Center, Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.
    • J. Neurosurg. 2010 Apr 1; 112 (4): 868-79.

    ObjectHuman amniotic fluid-derived mesenchymal stem cells (AFMSCs) have been shown to promote peripheral nerve regeneration, and the local delivery of neurotrophic factors may additionally enhance nerve regeneration capacity. The present study evaluates whether the transplantation of glia cell line-derived neurotrophic factor (GDNF)-modified human AFMSCs may enhance regeneration of sciatic nerve after a crush injury.MethodsPeripheral nerve injury was produced in Sprague-Dawley rats by crushing the left sciatic nerve using a vessel clamp. Either GDNF-modified human AFMSCs or human AFMSCs were embedded in Matrigel and delivered to the injured nerve. Motor function and electrophysiological studies were conducted after 1 and 4 weeks. Early or later nerve regeneration markers were used to evaluate nerve regeneration. The expression of GDNF in the transplanted human AFMSCs and GDNF-modified human AFMSCs was monitored at 7-day intervals.ResultsHuman AFMSCs were successfully transfected with adenovirus, and a significant amount of GDNF was detected in human AFMSCs or the culture medium supernatant. Increases in the sciatic nerve function index, the compound muscle action potential ratio, conduction latency, and muscle weight were found in the groups treated with human AFMSCs or GDNF-modified human AFMSCs. Importantly, the GDNF-modified human AFMSCs induced the greatest improvement. Expression of markers of early nerve regeneration, such as increased expression of neurofilament and BrdU and reduced Schwann cell apoptosis, as well as late regeneration markers, consisting of reduced vacuole counts, increased expression of Luxol fast blue and S100 protein, paralleled the results of motor function. The expression of GDNF in GDNF-modified human AFMSCs was demonstrated up to 4 weeks; however, the expression decreased over time.ConclusionsThe GDNF-modified human AFMSCs appeared to promote nerve regeneration. The consecutive expression of GDNF was demonstrated in GDNF-modified human AFMSCs up to 4 weeks. These findings support a nerve regeneration scenario involving cell transplantation with additional neurotrophic factor secretion.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.