• Mayo Clinic proceedings · May 2015

    Review

    Refining the ammonia hypothesis: a physiology-driven approach to the treatment of hepatic encephalopathy.

    • Elliot B Tapper, Z Gordon Jiang, and Vilas R Patwardhan.
    • Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA. Electronic address: etapper@bidmc.harvard.edu.
    • Mayo Clin. Proc. 2015 May 1; 90 (5): 646-58.

    AbstractHepatic encephalopathy (HE) is one of the most important complications of cirrhosis and portal hypertension. Although the etiology is incompletely understood, it has been linked to ammonia directly and indirectly. Our goal is to review for the clinician the mechanisms behind hyperammonemia and the pathogenesis of HE to explain the rationale for its therapy. We reviewed articles collected through a search of MEDLINE/PubMed, Cochrane Database of Systematic Reviews, and Google Scholar between October 1, 1948, and December 8, 2014, and by a manual search of citations within retrieved articles. Search terms included hepatic encephalopathy, ammonia hypothesis, brain and ammonia, liver failure and ammonia, acute-on-chronic liver failure and ammonia, cirrhosis and ammonia, portosytemic shunt, ammonia and lactulose, rifaximin, zinc, and nutrition. Ammonia homeostatsis is a multiorgan process involving the liver, brain, kidneys, and muscle as well as the gastrointestinal tract. Indeed, hyperammonemia may be the first clue to poor functional reserves, malnutrition, and impending multiorgan dysfunction. Furthermore, the neuropathology of ammonia is critically linked to states of systemic inflammation and endotoxemia. Given the complex interplay among ammonia, inflammation, and other factors, ammonia levels have questionable utility in the staging of HE. The use of nonabsorbable disaccharides, antibiotics, and probiotics reduces gut ammoniagenesis and, in the case of antibiotics and probiotics, systemic inflammation. Nutritional support preserves urea cycle function and prevents wasting of skeletal muscle, a significant site of ammonia metabolism. Correction of hypokalemia, hypovolemia, and acidosis further assists in the reduction of ammonia production in the kidney. Finally, early and aggressive treatment of infection, avoidance of sedatives, and modification of portosystemic shunts are also helpful in reducing the neurocognitive effects of hyperammonemia. Refining the ammonia hypothesis to account for these other factors instructs a solid foundation for the effective treatment and prevention of hepatic encephalopathy. Copyright © 2015 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.