• Curr Opin Crit Care · Dec 2004

    Review

    Ventilator strategies for posttraumatic acute respiratory distress syndrome: airway pressure release ventilation and the role of spontaneous breathing in critically ill patients.

    • Nader Habashi and Penny Andrews.
    • Multi-trauma Intensive Care Unit, R Adams Cowley Shock Trauma Center, Baltimore, Maryland 21201, USA. nhabashi@umm.edu
    • Curr Opin Crit Care. 2004 Dec 1; 10 (6): 549-57.

    Purpose Of ReviewPatients who experience severe trauma are at increased risk for the development of acute lung injury and acute respiratory distress syndrome. The management strategies used to treat respiratory failure in this patient population should be comprehensive. Current trends in the management of acute lung injury and acute respiratory distress syndrome consist of maintaining acceptable gas exchange while limiting ventilator-associated lung injury.Recent FindingsCurrently, two distinct forms of ventilator-associated lung injury are recognized to produce alveolar stress failure and have been termed low-volume lung injury (intratidal alveolar recruitment and derecruitment) and high-volume lung injury (alveolar stretch and overdistension). Pathologically, alveolar stress failure from low- and high-volume ventilation can produce lung injury in animal models and is termed ventilator-induced lung injury. The management goal in acute lung injury and acute respiratory distress syndrome challenges clinicians to achieve the optimal balance that both limits the forms of alveolar stress failure and maintains effective gas exchange. The integration of new ventilator modes that include the augmentation of spontaneous breathing during mechanical ventilation may be beneficial and may improve the ability to attain these goals.SummaryAirway pressure release ventilation is a mode of mechanical ventilation that maintains lung volume to limit intra tidal recruitment /derecruitment and improves gas exchange while limiting over distension. Clinical and experimental data demonstrate improvements in arterial oxygenation, ventilation-perfusion matching (less shunt and dead space ventilation), cardiac output, oxygen delivery, and lower airway pressures during airway pressure release ventilation. Mechanical ventilation with airway pressure release ventilation permits spontaneous breathing throughout the entire respiratory cycle, improves patient comfort, reduces the use of sedation, and may reduce ventilator days.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.