• Journal of neurotrauma · Mar 2023

    Multicenter Study

    Development and external validation of a machine learning model for the early prediction of doses of harmful intracranial pressure in patients with severe traumatic brain injury.

    • Giorgia Carra, Fabian Güiza, Ian Piper, Giuseppe Citerio, Andrew Maas, Bart Depreitere, Geert Meyfroidt, and CENTER-TBI High-Resolution ICU (HR ICU) Sub-Study Participants and Investigators.
    • Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, and UZ Leuven and KU Leuven, Leuven, Belgium.
    • J. Neurotrauma. 2023 Mar 1; 40 (5-6): 514522514-522.

    AbstractTreatment and prevention of elevated intracranial pressure (ICP) is crucial in patients with severe traumatic brain injury (TBI). Elevated ICP is associated with secondary brain injury, and both intensity and duration of an episode of intracranial hypertension, often referred to as "ICP dose," are associated with worse outcomes. Prediction of such harmful episodes of ICP dose could allow for a more proactive and preventive management of TBI, with potential implications on patients' outcomes. The goal of this study was to develop and validate a machine-learning (ML) model to predict potentially harmful ICP doses in patients with severe TBI. The prediction target was defined based on previous studies and included a broad range of doses of elevated ICP that have been associated with poor long-term neurological outcomes. The ML models were used, with minute-by-minute ICP and mean arterial blood pressure signals as inputs. Harmful ICP episodes were predicted with a 30 min forewarning. Models were developed in a multi-center dataset of 290 adult patients with severe TBI and externally validated on 264 patients from the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) dataset. The external validation of the prediction model on the CENTER-TBI dataset demonstrated good discrimination and calibration (area under the curve: 0.94, accuracy: 0.89, precision: 0.87, sensitivity: 0.78, specificity: 0.94, calibration-in-the-large: 0.03, calibration slope: 0.93). The proposed prediction model provides accurate and timely predictions of harmful doses of ICP on the development and external validation dataset. A future interventional study is needed to assess whether early intervention on the basis of ICP dose predictions will result in improved outcomes.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.