• Neuromodulation · Jul 2023

    Heterogeneous Cortical Effects of Spinal Cord Stimulation.

    • Bart Witjes, Sylvain Baillet, Mathieu Roy, Robert Oostenveld, HuygenFrank J P MFJPMCenter for Pain Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands., and Cecile C de Vos.
    • Center for Pain Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands. Electronic address: b.witjes.1@erasmusmc.nl.
    • Neuromodulation. 2023 Jul 1; 26 (5): 950960950-960.

    ObjectivesThe understanding of the cortical effects of spinal cord stimulation (SCS) remains limited. Multiple studies have investigated the effects of SCS in resting-state electroencephalography. However, owing to the large variation in reported outcomes, we aimed to describe the differential cortical responses between two types of SCS and between responders and nonresponders using magnetoencephalography (MEG).Materials And MethodsWe conducted 5-minute resting-state MEG recordings in 25 patients with chronic pain with active SCS in three sessions, each after a one-week exposure to tonic, burst, or sham SCS. We extracted six spectral features from the measured neurophysiological signals: the alpha peak frequency; alpha power ratio (power 7-9 Hz/power 9-11 Hz); and average power in the theta (4-7.5 Hz), alpha (8-12.5 Hz), beta (13-30 Hz), and low-gamma (30.5-60 Hz) frequency bands. We compared these features (using nonparametric permutation t-tests) for MEG sensor and cortical map effects across stimulation paradigms, between participants who reported low (< 5, responders) vs high (≥ 5, nonresponders) pain scores, and in three representative participants.ResultsWe found statistically significant (p < 0.05, false discovery rate corrected) increased MEG sensor signal power below 3 Hz in response to burst SCS compared with tonic and sham SCS. We did not find statistically significant differences (all p > 0.05) between the power spectra of responders and nonresponders. Our data did not show statistically significant differences in the spectral features of interest among the three stimulation paradigms or between responders and nonresponders. These results were confirmed by the MEG cortical maps. However, we did identify certain trends in the MEG source maps for all comparisons and several features, with substantial variation across participants.ConclusionsThe considerable variation in cortical responses to the various SCS treatment options necessitates studies with sample sizes larger than commonly reported in the field and more personalized treatment plans. Studies with a finer stratification between responders and nonresponders are required to advance the knowledge on SCS treatment effects.Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…