• Neurocritical care · Feb 2024

    Multicenter Study Observational Study

    Derivation of Coagulation Phenotypes and the Association with Prognosis in Traumatic Brain Injury: A Cluster Analysis of Nationwide Multicenter Study.

    • Gaku Fujiwara, Yohei Okada, Naoto Shiomi, Takehiko Sakakibara, Tarumi Yamaki, and Naoya Hashimoto.
    • Department of Neurosurgery, Saiseikai Shiga Hospital, Imperial Gift Foundation Inc, 2-4-1, Ohashi, Ritto, Shiga, Japan. gfujiwara-tuk@umin.ac.jp.
    • Neurocrit Care. 2024 Feb 1; 40 (1): 292302292-302.

    BackgroundThe pathogenesis and pathophysiology of traumatic coagulopathy during traumatic brain injury is not well understood, and the appropriate treatment strategy for this condition has not been established. This study aimed to evaluate the coagulation phenotypes and their effect on prognosis in patients with isolated traumatic brain injury.MethodsIn this multicenter cohort study, we retrospectively analyzed data from the Japan Neurotrauma Data Bank. Adults with isolated traumatic brain injury (head abbreviated injury scale > 2; abbreviated injury scale of any other trauma < 3) who were registered in the Japan Neurotrauma Data Bank were included in this study. The primary outcome was the association of coagulation phenotypes with in-hospital mortality. Coagulation phenotypes were derived using k-means clustering with coagulation markers, including prothrombin time international normalized ratio (PT-INR), activated partial thromboplastin time (APTT), fibrinogen (FBG), and D-dimer (DD) on arrival at the hospital. Multivariable logistic regression analyses were conducted to calculate the adjusted odds ratios of coagulation phenotypes with their 95% confidence intervals (CIs) for in-hospital mortality.ResultsIn total, 556 patients were enrolled and five coagulation phenotypes were identified. The median (interquartile range) score for the Glasgow Coma Scale was 6 (4-9). Cluster A (n = 129) had the closest to normal coagulation values; cluster B (n = 323) had a mild high DD phenotype; cluster C (n = 30) had a prolonged PT-INR phenotype with a higher frequency of antithrombotic medication in elderly patients than in younger patients; cluster D (n = 45) had a low amount of FBG, high DD, and prolonged APTT phenotype with a high incidence of skull fracture; and cluster E (n = 29) had a low amount of FBG and extremely high DD phenotype with high energy trauma and a high incidence of skull fracture. In the multivariable logistic regression analysis, the association of clusters B, C, D, and E with in-hospital mortality yielded the corresponding adjusted odds ratios of 2.17 (95% CI 1.22-3.86), 2.61 (95% CI 1.01-6.72), 10.0 (95% CI 4.00-25.2), and 24.1 (95% CI 7.12-81.3), respectively, relative to cluster A.ConclusionsThis multicenter, observational study identified five different coagulation phenotypes of traumatic brain injury and showed associations of these phenotypes with in-hospital mortality.© 2023. Springer Science+Business Media, LLC, part of Springer Nature and Neurocritical Care Society.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…