• Eur Spine J · Mar 2024

    MicroRNA-29a: a novel target for non-operative management of symptomatic lumbar spinal stenosis.

    • Richard A Wawrose, Anthony A Oyekan, Yunting Melissa Tang, Stephen R Chen, Joseph Chen, Brandon K Couch, Dong Wang, Peter G Alexander, Gwendolyn A Sowa, Nam V Vo, and Joon Y Lee.
    • Ferguson Laboratory for Orthopedic and Spine Research, Department of Orthopedic Surgery, University of Pittsburgh, 200 Lothrop Street, E1643 Biomedical Science Tower, Pittsburgh, PA, 15261, USA.
    • Eur Spine J. 2024 Mar 1; 33 (3): 892899892-899.

    PurposeLumbar spinal stenosis (LSS) is the most common reason for spinal surgery in patients over the age of 65, and there are few effective non-surgical treatments. Therefore, the development of novel treatment or preventative modalities to decrease overall cost and morbidity associated with LSS is an urgent matter. The cause of LSS is multifactorial; however, a significant contributor is ligamentum flavum hypertrophy (LFH) which causes mechanical compression of the cauda equina or nerve roots. We assessed the role of a novel target, microRNA-29a (miR-29a), in LFH and investigated the potential for using miR-29a as a therapeutic means to combat LSS.MethodsLigamentum flavum (LF) tissue was collected from patients undergoing decompressive surgery for LSS and assessed for levels of miR-29a and pro-fibrotic protein expression. LF cell cultures were then transfected with either miR-29a over-expressor (agonist) or inhibitor (antagonist). The effects of over-expression and under-expression of miR-29a on expression of pro-fibrotic proteins was assessed.ResultsWe demonstrated that LF at stenotic levels had a loss of miR-29a expression. This was associated with greater LF tissue thickness and higher mRNA levels of collagen I and III. We also demonstrated that miR29-a plays a direct role in the regulation of collagen gene expression in ligamentum flavum. Specifically, agents that increase miR-29a may attenuate LFH, while those that decrease miR-29a promote fibrosis and LFH.ConclusionThis study demonstrates that miR-29a may potentially be used to treat LFH and provides groundwork to initiate the development of a therapeutic product for LSS.© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.