• Transl Res · Nov 2023

    Mitochondrial aspartate/glutamate carrier AGC1 regulates cardiac function via Drp1-mediated mitochondrial fission in doxorubicin-induced cardiomyopathy.

    • Yan Xia, Jiayu Jin, Ao Chen, Danbo Lu, Xinyu Che, Jiaqi Ma, Su Li, Ming Yin, Zheng Yang, Hao Lu, Chenguang Li, Jinxiang Chen, Muyin Liu, Yuan Wu, Hui Gong, Yunzeng Zou, Zhangwei Chen, Juying Qian, and Junbo Ge.
    • Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
    • Transl Res. 2023 Nov 1; 261: 284028-40.

    AbstractMitochondrial fission has been noted in the pathogenesis of dilated cardiomyopathy (DCM), but the underlying specific regulatory mechanism, especially in the development of doxorubicin (DOX)-induced cardiomyopathy remains unclear. In the present study, we explore whether the aspartate-glutamate carrier1 (AGC1) interacts with the fission protein dynamin-related protein 1 (Drp1) and reveal the functional and molecular mechanisms contributing to DOX-induced cardiomyopathy. Results of co-immunoprecipitation mass spectrometry (CO-IP MS) analysis based on heart tissue of DCM patients revealed that AGC1 expression was significantly upregulated in DCM-induced injury and AGC1 level was closely correlated with mitochondrial morphogenesis and function. We showed that AGC1 knockdown protected mice from DOX-induced cardiomyopathy by preventing mitochondrial fission, while the overexpression of AGC1 in the mouse heart led to impairment of cardiac function. Mechanistically, AGC1 overexpression could upregulate Drp1 expression and contribute to subsequent excessive mitochondrial fission. Specifically, AGC1 knockdown or the use of Drp1-specific inhibitor Mdivi-1 alleviated cardiomyocyte apoptosis and inhibited impairment of mitochondrial function induced by DOX exposure. In summary, our data illustrate that AGC1, as a novel contributor to DCM, regulates cardiac function via Drp1-mediated mitochondrial fission, indicating that targeting AGC1-Drp1 axis could be a potential therapeutic strategy for DOX-induced cardiomyopathy.Copyright © 2023 Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…