• Intensive care medicine · Aug 2023

    Exposure to ambient air pollutants and acute respiratory distress syndrome risk in sepsis.

    • John P Reilly, Zhiguo Zhao, ShashatyMichael G SMGSDivision of Pulmonary, Allergy, and Critical Care, University of Pennsylvania, Perelman School of Medicine, 5005 Gibson Building, 3400 Spruce Street, Philadelphia, PA, 19104, USA.Center for Translational Lung Biology, University of P, Tatsuki Koyama, Tiffanie K Jones, Brian J Anderson, Caroline A Ittner, Thomas Dunn, Todd A Miano, Oluwatosin Oniyide, John R Balmes, Michael A Matthay, Carolyn S Calfee, Jason D Christie, Nuala J Meyer, and Lorraine B Ware.
    • Division of Pulmonary, Allergy, and Critical Care, University of Pennsylvania, Perelman School of Medicine, 5005 Gibson Building, 3400 Spruce Street, Philadelphia, PA, 19104, USA. john.reilly@pennmedicine.upenn.edu.
    • Intensive Care Med. 2023 Aug 1; 49 (8): 957965957-965.

    PurposeExposures to ambient air pollutants may prime the lung enhancing risk of acute respiratory distress syndrome (ARDS) in sepsis. Our objective was to determine the association of short-, medium-, and long-term pollutant exposures and ARDS risk in critically ill sepsis patients.MethodsWe analyzed a prospective cohort of 1858 critically ill patients with sepsis, and estimated short- (3 days), medium- (6 weeks), and long- (5 years) term exposures to ozone, nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), particulate matter < 2.5 μm (PM2.5), and PM < 10 μm (PM10) using weighted averages of daily levels from monitors within 50 km of subjects' residences. Subjects were followed for 6 days for ARDS by the Berlin Criteria. The association between each pollutant and ARDS was determined using multivariable logistic regression adjusting for preselected confounders. In 764 subjects, we measured plasma concentrations of inflammatory proteins at presentation and tested for an association between pollutant exposure and protein concentration via linear regression.ResultsARDS developed in 754 (41%) subjects. Short- and long-term exposures to SO2, NO2, and PM2.5 were associated with ARDS risk (SO2: odds ratio (OR) for the comparison of the 75-25th long-term exposure percentile 1.43 (95% confidence interval (CI) 1.16, 1.77); p < 0.01; NO2: 1.36 (1.06, 1.74); p = 0.04, PM2.5: 1.21 (1.04, 1.41); p = 0.03). Long-term exposures to these three pollutants were also associated with plasma interleukin-1 receptor antagonist and soluble tumor necrosis factor receptor-1 concentrations.ConclusionShort and long-term exposures to ambient SO2, PM2.5, and NO2 are associated with increased ARDS risk in sepsis, representing potentially modifiable environmental risk factors for sepsis-associated ARDS.© 2023. Springer-Verlag GmbH Germany, part of Springer Nature.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…