-
- Omid Mehrpour, Farhad Saeedi, Jafar Abdollahi, Alireza Amirabadizadeh, and Foster Goss.
- Michigan Poison & Drug Information Center, Wayne State University School of Medicine, Detroit, Michigan, United States.
- J Res Med Sci. 2023 Jan 1; 28: 4949.
BackgroundDiphenhydramine (DPH) is an antihistamine medication that in overdose can result in anticholinergic symptoms and serious complications, including arrhythmia and coma. We aimed to compare the value of various machine learning (ML) models, including light gradient boosting machine (LGBM), logistic regression (LR), and random forest (RF), in the outcome prediction of DPH poisoning.Materials And MethodsWe used the National Poison Data System database and included all of the human exposures of DPH from January 01, 2017 to December 31, 2017, and excluded those cases with missing information, duplicated cases, and those who reported co-ingestion. Data were split into training and test datasets, and three ML models were compared. We developed confusion matrices for each, and standard performance metrics were calculated.ResultsOur study population included 53,761 patients with DPH exposure. The most common reasons for exposure, outcome, chronicity of exposure, and formulation were captured. Our results showed that the average precision-recall area under the curve (AUC) of 0.84. LGBM and RF had the highest performance (average AUC of 0.91), followed by LR (average AUC of 0.90). The specificity of the models was 87.0% in the testing groups. The precision of models was 75.0%. Recall (sensitivity) of models ranged between 73% and 75% with an F1 score of 75.0%. The overall accuracy of LGBM, LR, and RF models in the test dataset was 74.8%, 74.0%, and 75.1%, respectively. In total, just 1.1% of patients (mostly those with major outcomes) received physostigmine.ConclusionOur study demonstrates the application of ML in the prediction of DPH poisoning.Copyright: © 2023 Journal of Research in Medical Sciences.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.