• Crit Care · Sep 2023

    Multicenter Study

    Prospective, multicenter validation of the deep learning-based cardiac arrest risk management system for predicting in-hospital cardiac arrest or unplanned intensive care unit transfer in patients admitted to general wards.

    • Kyung-Jae Cho, Jung Soo Kim, Dong Hyun Lee, Sang-Min Lee, Myung Jin Song, Sung Yoon Lim, Young-Jae Cho, You Hwan Jo, Yunseob Shin, and Yeon Joo Lee.
    • VUNO, Seoul, Republic of Korea.
    • Crit Care. 2023 Sep 5; 27 (1): 346346.

    BackgroundRetrospective studies have demonstrated that the deep learning-based cardiac arrest risk management system (DeepCARS™) is superior to the conventional methods in predicting in-hospital cardiac arrest (IHCA). This prospective study aimed to investigate the predictive accuracy of the DeepCARS™ for IHCA or unplanned intensive care unit transfer (UIT) among general ward patients, compared with that of conventional methods in real-world practice.MethodsThis prospective, multicenter cohort study was conducted at four teaching hospitals in South Korea. All adult patients admitted to general wards during the 3-month study period were included. The primary outcome was predictive accuracy for the occurrence of IHCA or UIT within 24 h of the alarm being triggered. Area under the receiver operating characteristic curve (AUROC) values were used to compare the DeepCARS™ with the modified early warning score (MEWS), national early warning Score (NEWS), and single-parameter track-and-trigger systems.ResultsAmong 55,083 patients, the incidence rates of IHCA and UIT were 0.90 and 6.44 per 1,000 admissions, respectively. In terms of the composite outcome, the AUROC for the DeepCARS™ was superior to those for the MEWS and NEWS (0.869 vs. 0.756/0.767). At the same sensitivity level of the cutoff values, the mean alarm counts per day per 1,000 beds were significantly reduced for the DeepCARS™, and the rate of appropriate alarms was higher when using the DeepCARS™ than when using conventional systems.ConclusionThe DeepCARS™ predicts IHCA and UIT more accurately and efficiently than conventional methods. Thus, the DeepCARS™ may be an effective screening tool for detecting clinical deterioration in real-world clinical practice. Trial registration This study was registered at ClinicalTrials.gov ( NCT04951973 ) on June 30, 2021.© 2023. BioMed Central Ltd., part of Springer Nature.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.