• Minerva anestesiologica · Sep 2023

    Review

    Cerebral hemodynamics after cardiac arrest: implications for clinical management.

    • Tison Schoenthal, Ryan Hoiland, Donald E Griesdale, and Mypinder S Sekhon.
    • Division of Critical Care Medicine, Department of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada.
    • Minerva Anestesiol. 2023 Sep 1; 89 (9): 824833824-833.

    AbstractFollowing resuscitation from cardiac arrest, hypoxic ischemic brain injury (HIBI) ensues, which is the primary determinant of adverse outcome. The pathophysiology of HIBI can be compartmentalized into primary and secondary injury, resulting from cerebral ischemia during cardiac arrest and reperfusion following successful resuscitation, respectively. During the secondary injury phase, increased attention has been directed towards the optimization of cerebral oxygen delivery to prevent additive injury to the brain. During this phase, cerebral hemodynamics are characterized by early hyperemia following resuscitation and then a protracted phase of cerebral hypoperfusion termed "no-reflow" during which additional hypoxic-ischemic injury can occur. As such, identification of therapeutic strategies to optimize cerebral delivery of oxygen is at the forefront of HIBI research. Unfortunately, randomized control trials investigating the manipulation of arterial carbon dioxide tension and mean arterial pressure augmentation as methods to potentially improve cerebral oxygen delivery have shown no impact on clinical outcomes. Emerging literature suggests differential patient-specific phenotypes may exist in patients with HIBI. The potential to personalize therapeutic strategies in the critical care setting based upon patient-specific pathophysiology presents an attractive strategy to improve HIBI outcomes. Herein, we review the cerebral hemodynamic pathophysiology of HIBI, discuss patient phenotypes as it pertains to personalizing care, as well as suggest future directions.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.