-
- Qinyu Wu, Shan Zhou, Dan Xu, Ping Meng, Qiurong Chen, Xiaoxu Wang, Xiaolong Li, Shuangqin Chen, Huiyun Ye, Wenting Ye, Yabing Xiong, Jiemei Li, Jinhua Miao, Weiwei Shen, Xu Lin, Fan Fan Hou, Youhua Liu, Yunfang Zhang, and Lili Zhou.
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, China.
- Transl Res. 2024 Feb 1; 264: 153215-32.
AbstractGlomeruli stand at the center of nephrons to accomplish filtration and albumin interception. Podocytes and mesangial cells are the major constituents in the glomeruli. However, their interdependency in glomerular injury has rarely been reported. Herein, we investigated the role of C-X-C chemokine receptor type 4 (CXCR4) in mediating the crosstalk between podocytes and mesangial cells. We found CXCR4 and angiotensin II (AngII) increased primarily in injured podocytes. However, type-1 receptor of angiotensin II (AT1) and stromal cell-derived factor 1α (SDF-1α), a ligand of CXCR4, were evidently upregulated in mesangial cells following the progression of podocyte injury. Ectopic expression of CXCR4 in 5/6 nephrectomy mice increased the decline of renal function and glomerular injury, accelerated podocyte injury and mesangial cell activation, and initiated CXCR4-AT1 axis signals. Additionally, treatment with losartan, an AT1 blocker, interrupted the cycle of podocyte injury and mesangial matrix deposition triggered by CXCR4. Podocyte-specific ablation of CXCR4 gene blocked podocyte injury and mesangial cell activation. In vitro, CXCR4 overexpression induced oxidative stress and renin angiotensin system (RAS) activation in podocytes, and triggered the communication between podocytes and mesangial cells. In cultured mesangial cells, AngII treatment induced the expression of SDF-1α, which was secreted into the supernatant to further promote oxidative stress and cell injury in podocytes. Collectively, these results demonstrate that the CXCR4-AT1 axis plays a vital role in glomerular injury via mediating pathologic crosstalk between podocytes and mesangial cells. Our findings uncover a novel pathogenic mechanism by which the CXCR4-AT1 axis promotes glomerular injury.Copyright © 2023 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.