• Br J Surg · Nov 2023

    Machine learning to predict outcomes following endovascular abdominal aortic aneurysm repair.

    • Ben Li, Badr Aljabri, Raj Verma, Derek Beaton, Naomi Eisenberg, Douglas S Lee, Duminda N Wijeysundera, Thomas L Forbes, Ori D Rotstein, Charles de Mestral, Muhammad Mamdani, Graham Roche-Nagle, and Mohammed Al-Omran.
    • Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
    • Br J Surg. 2023 Nov 9; 110 (12): 184018491840-1849.

    BackgroundEndovascular aneurysm repair (EVAR) for abdominal aortic aneurysm (AAA) carries important perioperative risks; however, there are no widely used outcome prediction tools. The aim of this study was to apply machine learning (ML) to develop automated algorithms that predict 1-year mortality following EVAR.MethodsThe Vascular Quality Initiative database was used to identify patients who underwent elective EVAR for infrarenal AAA between 2003 and 2023. Input features included 47 preoperative demographic/clinical variables. The primary outcome was 1-year all-cause mortality. Data were split into training (70 per cent) and test (30 per cent) sets. Using 10-fold cross-validation, 6 ML models were trained using preoperative features with logistic regression as the baseline comparator. The primary model evaluation metric was area under the receiver operating characteristic curve (AUROC). Model robustness was evaluated with calibration plot and Brier score.ResultsSome 63 655 patients were included. One-year mortality occurred in 3122 (4.9 per cent) patients. The best performing prediction model for 1-year mortality was XGBoost, achieving an AUROC (95 per cent c.i.) of 0.96 (0.95-0.97). Comparatively, logistic regression had an AUROC (95 per cent c.i.) of 0.69 (0.68-0.71). The calibration plot showed good agreement between predicted and observed event probabilities with a Brier score of 0.04. The top 3 predictive features in the algorithm were 1) unfit for open AAA repair, 2) functional status, and 3) preoperative dialysis.ConclusionsIn this data set, machine learning was able to predict 1-year mortality following EVAR using preoperative data and outperformed standard logistic regression models.© The Author(s) 2023. Published by Oxford University Press on behalf of BJS Society Ltd. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.