• Medicine · Sep 2023

    Transitional zone prostate cancer: Performance of texture-based machine learning and image-based deep learning.

    • Myoung Seok Lee, Young Jae Kim, Min Hoan Moon, Kwang Gi Kim, Jeong Hwan Park, Chang Kyu Sung, Hyeon Jeong, and Hwancheol Son.
    • Department of Radiology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea.
    • Medicine (Baltimore). 2023 Sep 29; 102 (39): e35039e35039.

    AbstractThis study is aimed to explore the performance of texture-based machine learning and image-based deep-learning for enhancing detection of Transitional-zone prostate cancer (TZPCa) in the background of benign prostatic hyperplasia (BPH), using a one-to-one correlation between prostatectomy-based pathologically proven lesion and MRI. Seventy patients confirmed as TZPCa and twenty-nine patients confirmed as BPH without TZPCa by radical prostatectomy. For texture analysis, a radiologist drew the region of interest (ROI) for the pathologically correlated TZPCa and the surrounding BPH on T2WI. Significant features were selected using Least Absolute Shrinkage and Selection Operator (LASSO), trained by 3 types of machine learning algorithms (logistic regression [LR], support vector machine [SVM], and random forest [RF]) and validated by the leave-one-out method. For image-based machine learning, both TZPCa and BPH without TZPCa images were trained using convolutional neural network (CNN) and underwent 10-fold cross validation. Sensitivity, specificity, positive and negative predictive values were presented for each method. The diagnostic performances presented and compared using an ROC curve and AUC value. All the 3 Texture-based machine learning algorithms showed similar AUC (0.854-0.861)among them with generally high specificity (0.710-0.775). The Image-based deep learning showed high sensitivity (0.946) with good AUC (0.802) and moderate specificity (0.643). Texture -based machine learning can be expected to serve as a support tool for diagnosis of human-suspected TZ lesions with high AUC values. Image-based deep learning could serve as a screening tool for detecting suspicious TZ lesions in the context of clinically suspected TZPCa, on the basis of the high sensitivity.Copyright © 2023 the Author(s). Published by Wolters Kluwer Health, Inc.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,706,662 articles already indexed!

We guarantee your privacy. Your email address will not be shared.