• Injury · Apr 2024

    Review

    MicroRNAs in osteoblast differentiation and fracture healing: From pathogenesis to therapeutic implication.

    • Jilong Yao, Ruiwen Xin, Chao Zhao, and Chunfu Yu.
    • Department of surgery teaching and research section, Jiangxi Medical College, Shangrao, 334000, China.
    • Injury. 2024 Apr 1; 55 (4): 111410111410.

    AbstractThe term "fracture" pertains to the occurrence of bones being either fully or partially disrupted as a result of external forces. Prolonged fracture healing can present a notable danger to the patient's general health and overall quality of life. The significance of osteoblasts in the process of new bone formation is widely recognized, and optimizing their function could be a desirable strategy. Therefore, the mending of bone fractures is intricately linked to the processes of osteogenic differentiation and mineralization. MicroRNAs (miRNAs) are RNA molecules that do not encode for proteins, but rather modulate the functioning of physiological processes by directly targeting proteins. The participation of microRNAs (miRNAs) in experimental investigations has been extensive, and their control functions have earned them the recognition as primary regulators of the human genome. Earlier studies have shown that modulating the expression of miRNAs, either by increasing or decreasing their levels, can initiate the differentiation of osteoblasts. This implies that miRNAs play a pivotal function in promoting osteogenesis, facilitating bone mineralization and formation, ultimately leading to an efficient healing of fractures. Hence, focusing on miRNAs can be considered a propitious therapeutic approach to accelerate the healing of fractures and forestall nonunion. In this manner, the information supplied by this investigation has the potential to aid in upcoming clinical utilization, including its possible use as biomarkers or as resources for devising innovative therapeutic tactics aimed at promoting fracture healing.Copyright © 2024 Elsevier Ltd. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…