• J Clin Monit Comput · Apr 2024

    A machine learning algorithm for detecting abnormal patterns in continuous capnography and pulse oximetry monitoring.

    • Feline L Spijkerboer, Frank J Overdyk, and Albert Dahan.
    • Clinical AI Implementation and Research Lab (CAIRELab), Leiden University Medical Center, Leiden, The Netherlands. f.l.spijkerboer@lumc.nl.
    • J Clin Monit Comput. 2024 Apr 15.

    AbstractContinuous capnography monitors patient ventilation but can be susceptible to artifact, resulting in alarm fatigue. Development of smart algorithms may facilitate accurate detection of abnormal ventilation, allowing intervention before patient deterioration. The objective of this analysis was to use machine learning (ML) to classify combined waveforms of continuous capnography and pulse oximetry as normal or abnormal. We used data collected during the observational, prospective PRODIGY trial, in which patients receiving parenteral opioids underwent continuous capnography and pulse oximetry monitoring while on the general care floor [1]. Abnormal ventilation segments in the data stream were reviewed by nine experts and inter-rater agreement was assessed. Abnormal segments were defined as the time series 60s before and 30s after an abnormal pattern was detected. Normal segments (90s continuous monitoring) were randomly sampled and filtered to discard sequences with missing values. Five ML models were trained on extracted features and optimized towards an Fβ score with β = 2. The results show a high inter-rater agreement (> 87%), allowing 7,858 sequences (2,944 abnormal) to be used for model development. Data were divided into 80% training and 20% test sequences. The XGBoost model had the highest Fβ score of 0.94 (with β = 2), showcasing an impressive recall of 0.98 against a precision of 0.83. This study presents a promising advancement in respiratory monitoring, focusing on reducing false alarms and enhancing accuracy of alarm systems. Our algorithm reliably distinguishes normal from abnormal waveforms. More research is needed to define patterns to distinguish abnormal ventilation from artifacts.© 2024. The Author(s).

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…