• Burns · Sep 2024

    Superoxide dismutase-contained solid lipid nanoparticles: Formulation development and In-vivo evaluation for second-degree burn wound healing in rats.

    • Behzad Sharif Makhmalzadeh, Siavash Khaksar Haghani Dehkordi, Anahita Rezaie, and Masoud Ali Karami.
    • Nanotechnology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. Electronic address: sharif-b@ajums.ac.ir.
    • Burns. 2024 Sep 1; 50 (7): 182318311823-1831.

    IntroductionSuperoxide dismutase (SOD), a natural enzyme with high antioxidant activity, reduces injury and accelerates wound healing by scavenging superoxide radicals. This enzyme plays an important role in cellular defense against oxidative stress such as burn injury. The aim of this study was to load SOD into solid lipid nanoparticles for the treatment of rat burn wounds.MethodsSolid lipid nanoparticles were prepared by Solvent Emulsification Diffusion method and evaluated for particle size, enzyme activity and enzyme entrapment efficiency. Twenty-seven rats in 3 different groups were induced with deep second-degree burns and then treated with SOD-loaded solid lipid nanoparticles, solid lipid nanoparticles without enzyme, or SOD solution. After the treatment period, the wounds were evaluated macroscopically for the area of healing and microscopically for indices of re-epithelialization, granulation tissue and angiogenesis.ResultsThe optimized SOD-loaded solid lipid nanoparticles showed a particle size of 35-85 ± 2.41 nm, 78.4 ± 4.31 % entrapment efficiency and 90 % initial enzyme activity. Macroscopic examination showed that the best recovery rate belonged to the solid lipid nanoparticle group. Pathological studies also showed that angiogenesis and granulation tissue were significantly better in this group. Compared to the other two groups, SOD-loaded solid lipid nanoparticles showed a significant improvement in pathological factors, particularly angiogenesis and granulation tissue, as well as a faster reduction in the number of inflammatory cells.ConclusionBased on this study, solid lipid nanoparticles could be used as an effective delivery system for SOD in the treatment of second-degree burns.Copyright © 2024 Elsevier Ltd and International Society of Burns Injuries. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.