• N. Engl. J. Med. · Aug 2024

    Case Reports

    An Accurate and Rapidly Calibrating Speech Neuroprosthesis.

    • Nicholas S Card, Maitreyee Wairagkar, Carrina Iacobacci, Xianda Hou, Tyler Singer-Clark, Francis R Willett, Erin M Kunz, Chaofei Fan, Maryam Vahdati Nia, Darrel R Deo, Aparna Srinivasan, Eun Young Choi, Matthew F Glasser, Leigh R Hochberg, Jaimie M Henderson, Kiarash Shahlaie, Sergey D Stavisky, and David M Brandman.
    • From the Departments of Neurological Surgery (N.S.C., M.W., C.I., X.H., T.S.-C., M.V.N., A.S., K.S., S.D.S., D.M.B.), Computer Science (X.H., M.V.N.), and Biomedical Engineering (T.S.-C., A.S.), University of California, Davis, Davis, and the Departments of Neurosurgery (D.R.D., E.Y.C., J.M.H.), Electrical Engineering (E.M.K.), and Computer Science (C.F.), the Wu Tsai Neurosciences Institute (E.M.K., J.M.H.), the Howard Hughes Medical Institute (F.R.W.), and Bio-X (J.M.H.), Stanford University, Stanford - both in California; the Departments of Radiology and Neuroscience, Washington University School of Medicine, Saint Louis (M.F.G.); the School of Engineering and Carney Institute for Brain Sciences, Brown University (L.R.H.), and the Center for Neurorestoration and Neurotechnology, Department of Veterans Affairs Office of Rehabilitation Research and Development, VA Providence Healthcare (L.R.H.) - both in Providence, RI; and the Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (L.R.H.).
    • N. Engl. J. Med. 2024 Aug 15; 391 (7): 609618609-618.

    BackgroundBrain-computer interfaces can enable communication for people with paralysis by transforming cortical activity associated with attempted speech into text on a computer screen. Communication with brain-computer interfaces has been restricted by extensive training requirements and limited accuracy.MethodsA 45-year-old man with amyotrophic lateral sclerosis (ALS) with tetraparesis and severe dysarthria underwent surgical implantation of four microelectrode arrays into his left ventral precentral gyrus 5 years after the onset of the illness; these arrays recorded neural activity from 256 intracortical electrodes. We report the results of decoding his cortical neural activity as he attempted to speak in both prompted and unstructured conversational contexts. Decoded words were displayed on a screen and then vocalized with the use of text-to-speech software designed to sound like his pre-ALS voice.ResultsOn the first day of use (25 days after surgery), the neuroprosthesis achieved 99.6% accuracy with a 50-word vocabulary. Calibration of the neuroprosthesis required 30 minutes of cortical recordings while the participant attempted to speak, followed by subsequent processing. On the second day, after 1.4 additional hours of system training, the neuroprosthesis achieved 90.2% accuracy using a 125,000-word vocabulary. With further training data, the neuroprosthesis sustained 97.5% accuracy over a period of 8.4 months after surgical implantation, and the participant used it to communicate in self-paced conversations at a rate of approximately 32 words per minute for more than 248 cumulative hours.ConclusionsIn a person with ALS and severe dysarthria, an intracortical speech neuroprosthesis reached a level of performance suitable to restore conversational communication after brief training. (Funded by the Office of the Assistant Secretary of Defense for Health Affairs and others; BrainGate2 ClinicalTrials.gov number, NCT00912041.).Copyright © 2024 Massachusetts Medical Society.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.