• Bmc Med · Nov 2024

    Randomized Controlled Trial Comparative Study

    Comparison of MRI artificial intelligence-guided cognitive fusion-targeted biopsy versus routine cognitive fusion-targeted prostate biopsy in prostate cancer diagnosis: a randomized controlled trial.

    • Ruiyi Deng, Yi Liu, Kexin Wang, Mingjian Ruan, Derun Li, Jingyun Wu, Jianhui Qiu, Pengsheng Wu, Peidong Tian, Chaojian Yu, Jiaheng Shang, Zihou Zhao, Jingcheng Zhou, Lin Cai, Xiaoying Wang, and Kan Gong.
    • Department of Urology, Peking University First Hospital, Beijing, China.
    • Bmc Med. 2024 Nov 13; 22 (1): 530530.

    BackgroundCognitive fusion MRI-guided targeted biopsy (cTB) has been widely used in the diagnosis of prostate cancer (PCa). However, cTB relies heavily on the operator's experience and confidence in MRI readings. Our objective was to compare the cancer detection rates of MRI artificial intelligence-guided cTB (AI-cTB) and routine cTB and explore the added value of using AI for the guidance of cTB.MethodsThis was a prospective, single-institution randomized controlled trial (RCT) comparing clinically significant PCa (csPCa) and PCa detection rates between AI-cTB and cTB. A total of 380 eligible patients were randomized to the AI-cTB group (n = 191) or the cTB group (n = 189). The AI-cTB group underwent AI-cTB plus systematic biopsy (SB) and the cTB group underwent routine cTB plus SB. The primary outcome was the detection rate of csPCa. The reference standard was the pathological results of the combination of TB (AI-cTB/cTB) and SB. Comparisons of detection rates of csPCa and PCa between groups were performed using the chi-square test or Fisher's exact test.ResultsThe overall csPCa and PCa detection rates of the whole inclusion cohort were 58.8% and 61.3%, respectively. The csPCa detection rates of TB combined with SB in the AI-cTB group were significantly greater than those in the cTB group at both the patient level (58.64% vs. 46.56%, p = 0.018) and per-lesion level (61.47% vs. 47.79%, p = 0.004). Compared with cTB, the AI-cTB could detect a greater proportion of patients with csPCa at both the per-patient level (69.39% vs. 49.71%, p < 0.001) and per-lesion level (68.97% vs. 48.57%, p < 0.001). Multivariate logistic analysis indicated that compared with the cTB, the AI-cTB significantly improved the possibility of detecting csPCa (p < 0.001).ConclusionsAI-cTB effectively improved the csPCa detection rate. This study successfully integrated AI with TB in the routine clinical workflow and provided a research paradigm for prospective AI-integrated clinical studies.Trial RegistrationClinicalTrials.gov, NCT06362291.© 2024. The Author(s).

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…