• Intern Emerg Med · Dec 2024

    Development and validation of a multivariable predictive model for Emergency Department Overcrowding based on the National Emergency Department Overcrowding Study (NEDOCS) score.

    • Diego Hernán Giunta, ThomasDiego SanchezDS0000-0003-1860-3603Internal Medicine Research Unit, Hospital Italiano de Buenos Aires, CABA, Argentina. diegom.sanchez@hospitalitaliano.org.ar., Lucrecia Bustamante, Maria Florencia Grande Ratti, and Bernardo Julio Martinez.
    • Internal Medicine Research Unit, Hospital Italiano de Buenos Aires, CABA, Argentina.
    • Intern Emerg Med. 2024 Dec 30.

    AbstractBackground Predicting potential overcrowding is a significant tool in efficient emergency department (ED) management. Our aim was to develop and validate overcrowding predictive models using accessible and high quality information. Methods Retrospective cohort study of consecutive days in the Hospital Italiano de Buenos Aires ED from june 2016 to may 2018. We estimated hourly NEDOCS score for the entire period, and defined the outcome as Sustained Critical ED Overcrowding (EDOC) equal to occurrence of 8 or more hours with a NEDOCS score ≥ 180. We generated 3 logistic regression predictive models with different related outcomes: beginning, ending or occurrence of Sustained Critical EDOC. We estimated calibration and discrimination as internal (random validation group and bootstrapping) and external validation (different period and different ED). Results The main model included both the beginning and occurrence of NEDOCS, including weather variables, variables related to NEDOCS itself and patient flow variables. The second model considered only the beginning of Sustained Critical EDOC and included variables related to NEDOCS. The last model considered the end of Sustained Critical EDOC and it included variables related to NEDOCS, weather, bed occupancy and management. Discrimination for the main model had an area under the receiveroperator curve of 0.997 (95% CI 0.994 - 1) in the validation group. Calibration for the model was very high on internal validation and acceptable on external validation. Conclusion The Sustained Critical EDOC predictive model includes variables that are easily obtained and can be used for effective resource management in situations of overcrowding.© 2024. The Author(s), under exclusive licence to Società Italiana di Medicina Interna (SIMI).

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.