• Anesthesia and analgesia · Nov 2024

    Glabridin Hypnosis in Zebrafish Larvae Is Associated With Effects on Multiple Anesthetic Target Receptors.

    • Aneesh Avancha, Helen Hoyt, Kieran Bhave, Madyson Medeiros, Daniel Cho, Lauren E Brown, Davinia Fernández González, John A Porco, and Stuart A Forman.
    • From the Department of Anesthesia Critical Care & Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts.
    • Anesth. Analg. 2024 Nov 21.

    BackgroundR-Glabridin is a major flavonoid of licorice (Glycyrrhiza glabra) root and known to modulate GABAA receptors, which are targets of many clinical hypnotics. However, R-glabridin hypnotic activity has not been reported in animals.MethodsInverted photomotor responses (IPMRs) were used to assess the hypnotic effects of natural R-glabridin and synthetic R/S-glabridin in wild-type zebrafish larvae and transgenic larvae lacking functional GABAA receptor β3 subunits (β30/0). Two-electrode voltage-clamp electrophysiology in Xenopus oocytes heterologously expressing ion channels quantified the effects of R-glabridin on wild-type and mutated human α1β3γ2L GABAA receptors, NR1B/NR2A N-methyl-D-aspatate (NMDA) receptors, and α4β2 neuronal nicotinic (nnACh) receptors.ResultsIPMRs in wild-type zebrafish larvae identified R/S-glabridin as an inhibitor (IC50 = 7.5 µM; 95% confidence interval [CI], 5.9-9.3 µM) that was about half as potent as R-glabridin (IC50 = 4.4. µM; 95% CI, 3.6-5.4 µM). In β30/0 zebrafish larvae, R-glabridin inhibited IPMRs with IC50 = 7.5 µM (95% CI, 5.6-10.0 µM). Electrophysiologic studies revealed that R-glabridin directly activated and positively modulated α1β3γ2L GABAA receptors. Modulation was significantly reduced by α1L232W and β3N265M mutations in the β+/α- transmembrane intersubunit sites where etomidate binds, but not by 5 other point mutations in 4 other transmembrane modulator binding sites. NMDA and nnACh receptors were inhibited by R-glabridin.Discussion/ConclusionsOur findings in zebrafish larvae indicate that IPMR inhibition by R-glabridin is more potent than S-glabridin and that β3-containing GABAA receptors contribute significantly to this behavioral effect. Molecular studies show that R-glabridin modulates at least 3 known anesthetic-sensitive ion channels, suggesting that it is a multimodal hypnotic.Copyright © 2024 International Anesthesia Research Society.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…