-
Chinese medical journal · Jan 2025
Suppression of METTL3 expression attenuated matrix stiffness-induced vaginal fibroblast-to-myofibroblast differentiation and abnormal modulation of the extracellular matrix in pelvic organ prolapse.
- Xiuqi Wang, Tao Guo, Xiaogang Li, Zhao Tian, Linru Fu, and Zhijing Sun.
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing 100730, China.
- Chin. Med. J. 2025 Jan 26.
BackgroundFibrosis of the connective tissue in the vaginal wall predominates in pelvic organ prolapse (POP), which is characterized by excessive fibroblast-to-myofibroblast differentiation and abnormal deposition of the extracellular matrix (ECM). Our study aimed to investigate the effect of ECM stiffness on vaginal fibroblasts and to explore the role of methyltransferase 3 (METTL3) in the development of POP.MethodsPolyacrylamide hydrogels were applied to create an ECM microenvironment with variable stiffness to evaluate the effects of ECM stiffness on the proliferation, differentiation, and expression of ECM components in vaginal fibroblasts. METTL3 small interfering RNA and an overexpression vector were transfected into vaginal fibroblasts to evaluate the effects of METTL3 silencing and overexpression on matrix stiffness-induced vaginal fibroblast-to-myofibroblast differentiation and abnormal modulation of the ECM. Both procedures were detected by 5-ethynyl-2'-deoxyuridine (EdU) staining, Western blotting (WB), quantitative real-time polymerase chain reaction (RT-qPCR), and immunofluorescence (IF).ResultsVaginal fibroblasts from POP patients exhibited increased proliferation ability, increased expression of α-smooth muscle actin (α-SMA), decreased expression of collagen I/III, and significantly decreased expression of tissue inhibitors of matrix metalloproteinases (TIMPs) in the stiff matrix (P <0.05). Compared with those from non-POP patients, vaginal wall tissues from POP patients demonstrated a significant increase in METTL3 content (P <0.05). However, silencing METTL3 expression in vaginal fibroblasts with high ECM stiffness resulted in decreased proliferation ability, decreased α-SMA expression, an increased ratio of collagen I/III, and increased TIMP1 and TIMP2 expression. Conversely, METTL3 overexpression significantly promoted the process of increased proliferation ability, increased α-SMA expression, decreased ratio of collagen I/III and decreased TIMP1 and TIMP2 expression in the soft matrix (P <0.05).ConclusionsElevated ECM stiffness can promote excessive proliferation, differentiation, and abnormal ECM modulation, and the expression of METTL3 plays an important role in alleviating or aggravating matrix stiffness-induced vaginal fibroblast-to-myofibroblast differentiation and abnormal ECM modulation.Copyright © 2025 The Chinese Medical Association, produced by Wolters Kluwer, Inc. under the CC-BY-NC-ND license.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.