• Eur Spine J · Feb 2025

    Deep learning-based multimodal integration of imaging and clinical data for predicting surgical approach in percutaneous transforaminal endoscopic discectomy.

    • Yefu Xu, Sangni Liu, Qingyi Tian, Zhuoyan Kou, Wenqing Li, Xinhui Xie, and Xiaotao Wu.
    • Department of Spine Surgery, ZhongDa Hospital Affiliated to Southeast University, Nanjing, 210009, Jiangsu, China.
    • Eur Spine J. 2025 Feb 8.

    BackgroundFor cases of multilevel lumbar disc herniation (LDH), selecting the surgical approach for Percutaneous Transforaminal Endoscopic Discectomy (PTED) presents significant challenges and heavily relies on the physician's judgment. This study aims to develop a deep learning (DL)-based multimodal model that provides objective and referenceable support by comprehensively analyzing imaging and clinical data to assist physicians.MethodsThis retrospective study collected imaging and clinical data from patients with multilevel LDH. Each segmental MR scan was concurrently fed into a multi-input ResNet 50 model to predict the target segment. The target segment scan was then input to a custom model to predict the PTED approach direction. Clinical data, including the patient's lower limb sensory and motor functions, were used as feature variables in a machine learning (ML) model for prediction. Bayesian optimization was employed to determine the optimal weights for the fusion of the two models.ResultThe predictive performance of the multimodal model significantly outperformed the DL and ML models. For PTED target segment prediction, the multimodal model achieved an accuracy of 93.8%, while the DL and ML models achieved accuracies of 87.7% and 87.0%, respectively. Regarding the PTED approach direction, the multimodal model had an accuracy of 89.3%, significantly higher than the DL model's 87.8% and the ML model's 87.6%.ConclusionThe multimodal model demonstrated excellent performance in predicting PTED target segments and approach directions. Its predictive performance surpassed that of the individual DL and ML models.© 2025. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,706,662 articles already indexed!

We guarantee your privacy. Your email address will not be shared.