• Neurocritical care · Feb 2025

    Predicting hematoma expansion after intracerebral hemorrhage: a comparison of clinician prediction with deep learning radiomics models.

    • Boyang Yu, Kara R Melmed, Jennifer Frontera, Weicheng Zhu, Haoxu Huang, Adnan I Qureshi, Abigail Maggard, Michael Steinhof, Lindsey Kuohn, Arooshi Kumar, Elisa R Berson, Anh T Tran, Seyedmehdi Payabvash, Natasha Ironside, Benjamin Brush, Seena Dehkharghani, Narges Razavian, and Rajesh Ranganath.
    • Center for Data Science, New York University, New York, NY, USA. boy.yu@nyu.edu.
    • Neurocrit Care. 2025 Feb 7.

    BackgroundEarly prediction of hematoma expansion (HE) following nontraumatic intracerebral hemorrhage (ICH) may inform preemptive therapeutic interventions. We sought to identify how accurately machine learning (ML) radiomics models predict HE compared with expert clinicians using head computed tomography (HCT).MethodsWe used data from 900 study participants with ICH enrolled in the Antihypertensive Treatment of Acute Cerebral Hemorrhage 2 Study. ML models were developed using baseline HCT images, as well as admission clinical data in a training cohort (n = 621), and their performance was evaluated in an independent test cohort (n = 279) to predict HE (defined as HE by 33% or > 6 mL at 24 h). We simultaneously surveyed expert clinicians and asked them to predict HE using the same initial HCT images and clinical data. Area under the receiver operating characteristic curve (AUC) were compared between clinician predictions, ML models using radiomic data only (a random forest classifier and a deep learning imaging model) and ML models using both radiomic and clinical data (three random forest classifier models using different feature combinations). Kappa values comparing interrater reliability among expert clinicians were calculated. The best performing model was compared with clinical predication.ResultsThe AUC for expert clinician prediction of HE was 0.591, with a kappa of 0.156 for interrater variability, compared with ML models using radiomic data only (a deep learning model using image input, AUC 0.680) and using both radiomic and clinical data (a random forest model, AUC 0.677). The intraclass correlation coefficient for clinical judgment and the best performing ML model was 0.47 (95% confidence interval 0.23-0.75).ConclusionsWe introduced supervised ML algorithms demonstrating that HE prediction may outperform practicing clinicians. Despite overall moderate AUCs, our results set a new relative benchmark for performance in these tasks that even expert clinicians find challenging. These results emphasize the need for continued improvements and further enhanced clinical decision support to optimally manage patients with ICH.© 2025. Springer Science+Business Media, LLC, part of Springer Nature and Neurocritical Care Society.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.