• Br. J. Pharmacol. · Jan 2000

    The peripheral antinociceptive effect induced by morphine is associated with ATP-sensitive K(+) channels.

    • A R Rodrigues and I D Duarte.
    • Department of Pharmacology, Institute of Biological Sciences, UFMG, 31.270.100, Belo Horizonte, Brazil.
    • Br. J. Pharmacol. 2000 Jan 1;129(1):110-4.

    AbstractThe effect of several K(+) channel blockers such as glibenclamide, tolbutamide, charybdotoxin (ChTX), apamin, tetraethylammonium (TEA), 4-aminopyridine (4-AP) and cesium on the peripheral antinociceptive effect of morphine was evaluated by the paw pressure test in Wistar rats. The intraplantar administration of a carrageenan suspension (250 microg) resulted in an acute inflammatory response and a decreased threshold to noxious pressure. Morphine administered locally into the paw (25, 50, 100 and 200 microg) elicited a dose-dependent antinociceptive effect which was demonstrated to be mediated by a peripheral site up to the 100 microg dose. The selective blockers of ATP-sensitive K(+) channels glibenclamide (20, 40 and 80 microg paw(-1)) and tolbutamide (40, 80 and 160 microg paw(-1)) antagonized the peripheral antinociception induced by morphine (100 microg paw(-1)). This effect was unaffected by ChTX (0. 5, 1.0 and 2.0 microg paw(-1)), a large conductance Ca(2+)-activated K(+) channel blocker, or by apamin (2.5, 5.0 and 10.0 microg paw(-1)), a selective blocker of a small conductance Ca(2+)-activated K(+) channel. Intraplantar administration of the non-specific K(+) channel blockers TEA (160, 320 and 640 microg), 4-AP (10, 50 and 100 microg) and cesium (125, 250 and 500 microg) also did not modify the peripheral antinociceptive effect of morphine. These results suggest that the peripheral antinociceptive effect of morphine may result from activation of ATP-sensitive K(+) channels, which may cause a hyperpolarization of peripheral terminals of primary afferents, leading to a decrease in action potential generation. In contrast, large conductance Ca(2+)-activated K(+) channels, small conductance Ca(2+)-activated K(+) channels as well as voltage-dependent K(+) channels appear not to be involved in this transduction pathway. British Journal of Pharmacology (2000) 129, 110 - 114

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…