• Brain · Sep 2015

    Multicenter Study

    Intrinsic functional connectivity differentiates minimally conscious from unresponsive patients.

    • Athena Demertzi, Georgios Antonopoulos, Lizette Heine, Henning U Voss, Julia Sophia Crone, Carlo de Los Angeles, Mohamed Ali Bahri, Carol Di Perri, Audrey Vanhaudenhuyse, Vanessa Charland-Verville, Martin Kronbichler, Eugen Trinka, Christophe Phillips, Francisco Gomez, Luaba Tshibanda, Andrea Soddu, Nicholas D Schiff, Susan Whitfield-Gabrieli, and Steven Laureys.
    • 1 Coma Science Group, GIGA-Research & Cyclotron Research Centre, University and CHU University Hospital of Liège, Liège, Belgium a.demertzi@ulg.ac.be.
    • Brain. 2015 Sep 1; 138 (Pt 9): 2619-31.

    AbstractDespite advances in resting state functional magnetic resonance imaging investigations, clinicians remain with the challenge of how to implement this paradigm on an individualized basis. Here, we assessed the clinical relevance of resting state functional magnetic resonance imaging acquisitions in patients with disorders of consciousness by means of a systems-level approach. Three clinical centres collected data from 73 patients in minimally conscious state, vegetative state/unresponsive wakefulness syndrome and coma. The main analysis was performed on the data set coming from one centre (Liège) including 51 patients (26 minimally conscious state, 19 vegetative state/unresponsive wakefulness syndrome, six coma; 15 females; mean age 49 ± 18 years, range 11-87; 16 traumatic, 32 non-traumatic of which 13 anoxic, three mixed; 35 patients assessed >1 month post-insult) for whom the clinical diagnosis with the Coma Recovery Scale-Revised was congruent with positron emission tomography scanning. Group-level functional connectivity was investigated for the default mode, frontoparietal, salience, auditory, sensorimotor and visual networks using a multiple-seed correlation approach. Between-group inferential statistics and machine learning were used to identify each network's capacity to discriminate between patients in minimally conscious state and vegetative state/unresponsive wakefulness syndrome. Data collected from 22 patients scanned in two other centres (Salzburg: 10 minimally conscious state, five vegetative state/unresponsive wakefulness syndrome; New York: five minimally conscious state, one vegetative state/unresponsive wakefulness syndrome, one emerged from minimally conscious state) were used to validate the classification with the selected features. Coma Recovery Scale-Revised total scores correlated with key regions of each network reflecting their involvement in consciousness-related processes. All networks had a high discriminative capacity (>80%) for separating patients in a minimally conscious state and vegetative state/unresponsive wakefulness syndrome. Among them, the auditory network was ranked the most highly. The regions of the auditory network which were more functionally connected in patients in minimally conscious state compared to vegetative state/unresponsive wakefulness syndrome encompassed bilateral auditory and visual cortices. Connectivity values in these three regions discriminated congruently 20 of 22 independently assessed patients. Our findings point to the significance of preserved abilities for multisensory integration and top-down processing in minimal consciousness seemingly supported by auditory-visual crossmodal connectivity, and promote the clinical utility of the resting paradigm for single-patient diagnostics.© The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.