• Resuscitation · Aug 2013

    Comparative Study

    The effects of an automatic, low pressure and constant flow ventilation device versus manual ventilation during cardiovascular resuscitation in a porcine model of cardiac arrest.

    • Xudong Hu, Andrew Ramadeen, Gabriel Laurent, Petsy Pui-Sze So, Ehtesham Baig, Gregory M T Hare, and Paul Dorian.
    • Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada.
    • Resuscitation. 2013 Aug 1;84(8):1150-5.

    BackgroundCardiac arrest is an important cause of mortality. Cardiopulmonary resuscitation (CPR) improves survival, however, delivery of effective CPR can be challenging and combining effective chest compressions with ventilation, while avoiding over-ventilation is difficult. We hypothesized that ventilation with a pneumatically powered, automatic ventilator (Oxylator(®)) can provide adequate ventilation in a model of cardiac arrest and improve the consistency of ventilations during CPR.Methods/ResultsTwelve pigs (∼40 kg, either sex) underwent 3 episodes each of cardiac arrest and resuscitation consisting of 30s of untreated ventricular fibrillation, followed by 5 min of CPR, defibrillation, and ∼30 min of recovery. During CPR in each episode, pigs were ventilated in 1 of 3 ways in random balanced order: manual ventilation using AMBU bag (12 breaths/min), low pressure Oxylator(®) (maximum airway pressure 15 cm H2O with 20 L/min constant flow in automatic mode [Ox15/20]), or high pressure Oxylator(®) (maximum airway pressure 20 cm H2O with 30 L/min constant flow in automatic mode [Ox20/30]). During CPR, both Ox15/20 and Ox20/30 resulted in higher levels of positive end expiratory pressure than manual ventilation. Ox15/20 ventilation also resulted in higher arterial pCO2 than manual ventilation. Ox20/30 ventilation yielded higher arterial pO2 and a lower arterial-alveolar gradient than manual ventilation. All pigs were successfully defibrillated, and no measured haemodynamic variables were different between the groups.ConclusionVentilation with an automatic ventilation device during CPR is feasible and provides adequate ventilation and comparable haemodynamics when compared to manual bag ventilation.Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…