• Resuscitation · Oct 2013

    Low apparent diffusion coefficient cluster-based analysis of diffusion-weighted MRI for prognostication of out-of-hospital cardiac arrest survivors.

    • Joonghee Kim, Kyuseok Kim, Sungmin Hong, Bojun Kwon, Il Dong Yun, Byung Se Choi, Cheolkyu Jung, Jae Hyuk Lee, You Hwan Jo, Taeyun Kim, Joong Eui Rhee, and Soo Hoon Lee.
    • Department of Emergency Medicine, Seoul National University Bundang Hospital, 166 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea.
    • Resuscitation. 2013 Oct 1;84(10):1393-9.

    ObjectiveRecent studies suggested quantitative analysis of diffusion-weighted magnetic resonance imaging as a promising tool for early prognostication of cardiac arrest patients. However, most of their methods involve significant manual image handling often subjective and difficult to reproduce. Therefore developing a computerized analysis method using easy-to-define characteristics would be useful.MethodsComatose out-of-hospital cardiac arrest (OHCA) patients who underwent brain MRI between January 2008 and July 2012 were identified from an OHCA registry. Apparent diffusion coefficient (ADC) axial images were analyzed using a program to detect and characterize clusters of low ADC pixels from six brain regions including frontal, occipital, parietal, rolandic and temporal and basal ganglia region. Identified clusters were ranked according to size, mean ADC and minimum ADC to assess the regional maximum cluster size (MCS), lowest mean ADC (LMEAN) and lowest minimum ADC (LMIN). Their power to predict poor outcome, defined as 6-month CPC 3 or higher, was assessed by contingency table analyses.Results51 OHCA patients were eligible during the study period. The sensitivities of MCS, LMEAN and LMIN to detect poor outcome varied according to brain region from 62.5 to 90.0%, 50.0 to 72.5% and 42.5 to 82.5% with their specificities set to 100%, respectively. The MCS of occipital region showed most favorable test profile (sensitivity 90%, specificity 100%; AUROC 0.940, 95% confidence interval 0.874-1.000).ConclusionThe cluster-based computerized image analysis might be a simple but useful method for prediction of poor neurologic outcome. Future studies validating its prognostic performance are required.Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?

    User can't be blank.

    Content can't be blank.

    Content is too short (minimum is 15 characters).

    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.