• Injury · Oct 2015

    PMMA-augmented SI screw: a biomechanical analysis of stiffness and pull-out force in a matched paired human cadaveric model.

    • Stephan Grechenig, Axel Gänsslen, Boyko Gueorguiev, Arne Berner, Michael Müller, Michael Nerlich, and Paul Schmitz.
    • Clinic of Trauma Surgery, University of Regensburg, Regensburg 93053, Germany. Electronic address: stephan.grechenig@ukr.de.
    • Injury. 2015 Oct 1; 46 Suppl 4: S125-8.

    IntroductionCurrent literature data and clinical experience show that the number of pelvic fractures continuously rises due to the increasing elderly population. In the elderly with suspected osteoporosis additional implant augmentation with bone cement seems to be an option to avoid secondary displacement. There are no reported biomechanical data in the literature comparing the fixation strength (and anchorage) of standard and augmented SI screws so far. The purpose of this study was to assess the biomechanical performance of cement-augmented versus non-augmented SI screws in a human cadaveric pelvis model.Material And MethodsSix human cadaveric pelvises preserved with the method of Thiel were used in this study. Each pelvis was split to a pair of 2 hemi-pelvises, assigned to 2 different groups for instrumentation with one non-augmented or one contralateral cement-augmented SI screw, placed in the body of S1 in a randomized fashion. The osteosynthesis followed a standard procedure with 3D controlled percutaneous iliosacral screw positioning. A biomechanical setup for a quasistatic pullout test of each SI screw was used. Construct stiffness and maximum pullout force were calculated from the load-displacement curve of the machine data. Statistical evaluation was performed at a level of significance p = .05 for all statistical tests.ResultsStiffness and pullout force in the augmented group (501.6 N/mm ± 123.7, 1336.8 N ± 221.1) were significantly higher than in the non-augmented one (289.7 N/mm ± 97.1, 597.7 N ± 115.5), p = .04 and p = .014, respectively. BMD influenced significantly the pullout force in all study groups.ConclusionCement augmentation significantly increased the fixation strength in iliosacral screw osteosynthesis of the sacrum in a biomechanical human cadaveric model.Copyright © 2015 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,706,642 articles already indexed!

We guarantee your privacy. Your email address will not be shared.