-
Human brain mapping · Nov 2013
Sample size estimates for well-powered cross-sectional cortical thickness studies.
- Heath R Pardoe, David F Abbott, Graeme D Jackson, and Alzheimer's Disease Neuroimaging Initiative.
- Brain Research Institute, Florey Neuroscience Institutes, Melbourne Brain Centre, Austin Hospital, Heidelberg, Victoria, Australia; Department of Medicine, The University of Melbourne, Victoria, Australia.
- Hum Brain Mapp. 2013 Nov 1;34(11):3000-9.
IntroductionCortical thickness mapping is a widely used method for the analysis of neuroanatomical differences between subject groups. We applied power analysis methods over a range of image processing parameters to derive a model that allows researchers to calculate the number of subjects required to ensure a well-powered cross-sectional cortical thickness study.Methods0.9-mm isotropic T1 -weighted 3D MPRAGE MRI scans from 98 controls (53 females, age 29.1 ± 9.7 years) were processed using Freesurfer 5.0. Power analyses were carried out using vertex-wise variance estimates from the coregistered cortical thickness maps, systematically varying processing parameters. A genetic programming approach was used to derive a model describing the relationship between sample size and processing parameters. The model was validated on four Alzheimer's Disease Neuroimaging Initiative control datasets (mean 126.5 subjects/site, age 76.6 ± 5.0 years).ResultsApproximately 50 subjects per group are required to detect a 0.25-mm thickness difference; less than 10 subjects per group are required for differences of 1 mm (two-sided test, 10 mm smoothing, α = 0.05). Sample size estimates were heterogeneous over the cortical surface. The model yielded sample size predictions within 2-6% of that determined experimentally using independent data from four other datasets. Fitting parameters of the model to data from each site reduced the estimation error to less than 2%.ConclusionsThe derived model provides a simple tool for researchers to calculate how many subjects should be included in a well-powered cortical thickness analysis.Copyright © 2012 Wiley Periodicals, Inc.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.