-
- Sung H Yang, Matt Gangidine, Timothy A Pritts, Michael D Goodman, and Alex B Lentsch.
- Department of Surgery, Institute for Military Medicine, University of Cincinnati, Cincinnati, Ohio.
- Shock. 2013 Dec 1; 40 (6): 471-5.
AbstractTraumatic brain injury (TBI) is a leading cause of mortality and disability. Acute postinjury insults after TBI, such as hypoxia, contribute to secondary brain injury and worse clinical outcomes. The functional and neuroinflammatory effects of brief episodes of hypoxia experienced following TBI have not been evaluated. Our previous studies have identified interleukin 6 (IL-6) as a potential mediator of mild TBI-induced pathology. In the present study, we sought to determine the effects of brief hypoxia on mild TBI and whether IL-6 played a role in the neuroinflammatory and functional deficits after injury. A murine model of mild TBI was induced by a weight drop (500 g from 1.5 cm). After injury, mice were exposed to immediate hypoxia (FIO2 = 15.1%) or normoxia (FIO2 = 21%) for 30 min. Serum and brain samples were analyzed for inflammatory cytokines 24 h after TBI. Neuron-specific enolase was measured as a serum biomarker of brain injury. Evaluation of motor coordination was performed for 5 days after TBI using a rotarod device. In some animals, anti-IL-6 was administered following TBI and hypoxia to neutralize systemic IL-6. Mice undergoing TBI had significant increases in brain injury. Exposure to brief hypoxia after TBI resulted in a more than 5-fold increase in serum neuron-specific enolase. This increase was associated with increases in serum and brain cytokine expression, suggesting that brief hypoxia exacerbates systemic and brain inflammation. Neutralization of IL-6 suppressed postinjury neuroinflammation and neuronal injury. In addition, TBI and hypoxia induced significant motor coordination deficits that were completely abrogated by IL-6 blockade. Exposure to hypoxia after TBI induces neuroinflammation and brain injury. These changes can be mitigated by neutralization of systemic IL-6. Interleukin 6 blockade also corrected the TBI-induced deficit in motor coordination. These data suggest that systemic IL-6 modulates the degree of neuroinflammation and contributes to reduced motor coordination after mild TBI.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.