• Injury · Jul 2012

    Comparative Study

    Biomechanical analysis of second-generation headless compression screws.

    • Soroush Assari, Kurosh Darvish, and Asif M Ilyas.
    • Department of Mechanical Engineering, Temple University, Philadelphia, PA 19122, USA.
    • Injury. 2012 Jul 1;43(7):1159-65.

    IntroductionHeadless Compression Screws (HCS) are commonly utilized for the fixation of small bone and articular fractures. Recently several new second generation HCS (SG-HCS) have been introduced with the purported benefits of improved biomechanical characteristics. We sought to determine and compare the biomechanical efficiencies of these screws.Material And MethodsFive HCS including four second generation (Mini-Acutrak 2 (Acumed), Twinfix (Stryker), Kompressor Mini (Integra), HCS 3.0 (Synthes)) and one first generation (Herbert-Whipple) were studied. Polyurethane foam blocks that represented osteoporotic cancellous bone (0.16 g/cc) with a simulated transverse fracture at the waist were utilized and five screws of each brand were tested for the generated compression force and fastening torque during insertion with and without pre-drilling.ResultsThe generated compression force was highest for Mini-Acutrak 2 (45.41 ± 0.88 N) and lowest for Herbert-Whipple (13.44 ± 2.35 N) and forces of Twinfix, Kompressor Mini, HCS 3.0 were in between in descending order. The compression force of SG-HCS increased slightly without pre-drilling but it was not statistically significant while the fastening torque increased significantly. Slight over-fastening beyond the recommended stage significantly reduced the compression force in Twinfix and Kompressor and had no or moderate effect in other screws.ConclusionAll SG-HCS demonstrated greater biomechanical characteristics than the first generation Herbert-Whipple screw. The Mini-Acutrak 2 with a variable pitch design generated the maximum compression force and showed the most reliability and sustainability. Screws with independently rotating trailing heads (Twinfix and Kompressor Mini) demonstrated loss of compression with extra turns. The increase of fastening torque due to over-fastening and loss of compression at the same time in some screw designs, demonstrated how the fastening torque (applied by the surgeon) can be a misleading measure of the compression force. Application of SG-HCS in osteoporotic bone without pre-drilling can slightly increase the compression force.Copyright © 2012 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…